Общая астрофизика Раздел 2. Звезды

Машонкина Людмила Ивановна

2.2. Спектральная классификация звезд, ее физическая интерпретация

Звезда излучает во всём диапазоне энергий фотонов.

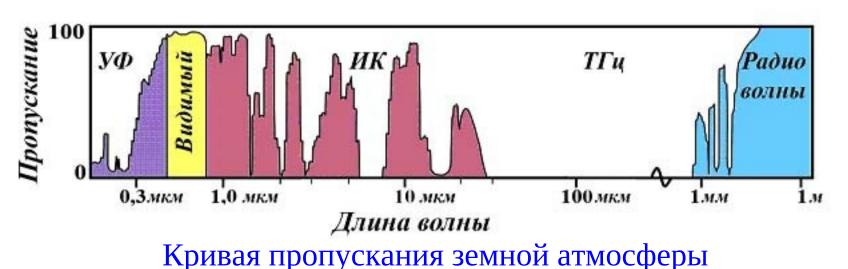
Спектр звезды — разложение излучения по λ , v.

Спектральные диапазоны

< 0.1 Å: гамма-диапазон,

0.1-100 Å: рентгеновский,

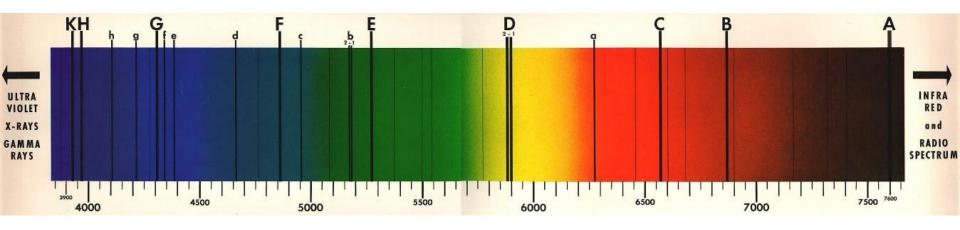
100-3900 Å: ультрафиолетовый,


3900-7600 Å: видимый,

0.76-100 мкм: инфракрасный,

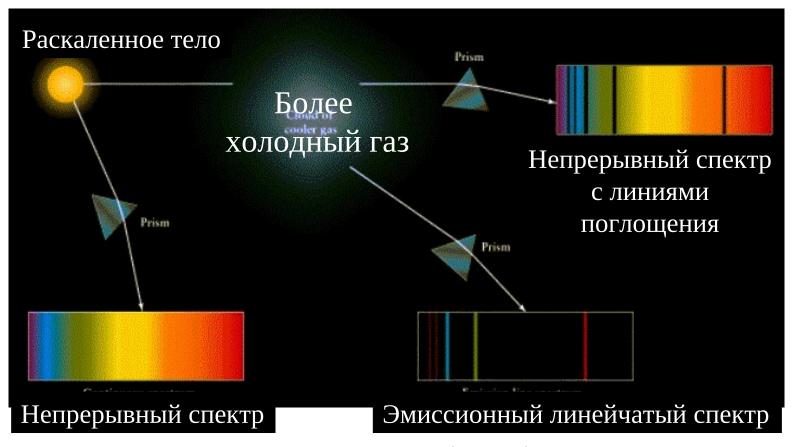
> 100 мкм: радиодиапазон.

Единицы измерения длин волн:


- метр
- 1 $\text{HM} = 10^{-9} \text{ M}$
- $1 \text{MKM} = 10^{-6} \text{ M}$
- 1 Å = 0.1 HM

1666, *И. Ньютон*: непрерывный солнечный спектр, 1802, *У.Х. Волластон*: 4 темных линии в спектре,

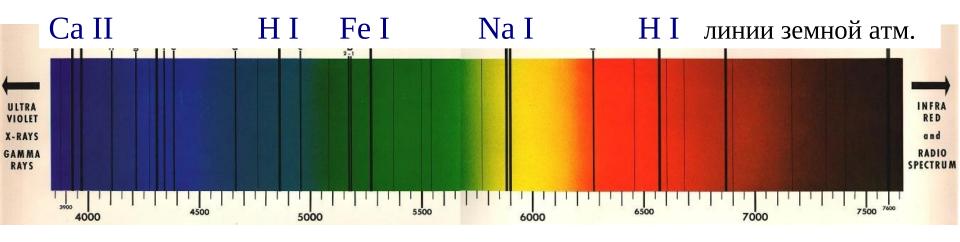
1815-1826, Й. Фраунгофер: начало звёздной спектроскопии


- ✓ Солнце: 574 темные линии.
- ✓ Спектры звёзд различаются, но положение общих линий совпадает.

Фраунгоферов спектр Солнца от 3900 до 7500 Å.

Законы спектрального анализа

Р.В. Бунзен, Г.Р. Кирхгоф, 1859



Спектры звезд — абсорбционные. Звезда - раскаленное тело, окружённое более холодной газовой атмосферой.

Отождествление линий в звездных спектрах

Бунзен, Кирхгоф, Хеггинс, Локьер, Ангстрем (1860-80 гг.), сравнение с лабораторными образцами:

K, H – линии Ca II (Ca⁺), D - Na I (Na⁰), другие - H I, Fe I

Звездные линии поглощения образованы известными на Земле химическими элементами.

Гелий - единственный элемент, открытый сначала в космосе (Солнце, 1868, *П. Жансен*, *Дж. Локьер*, линия Не I 5876 Å).

В земных породах: Л. Пальмьери (1881), У. Рамзай (1895)

Спектральная классификация звезд.

Гарвардская классификация, 1886, Э.Ч. Пикеринг.

Метод: Объективная призма + фотопластинка.

Критерии:

- поглощение в линиях Н
 в порядке его уменьшения ,
- плавное изменение других спектральных особенностей.

Спектр. классы (Sp) от A до Q.

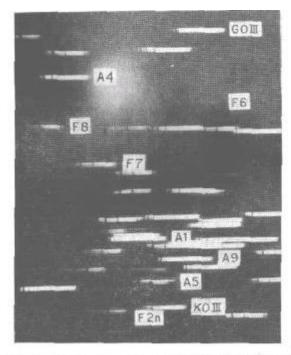
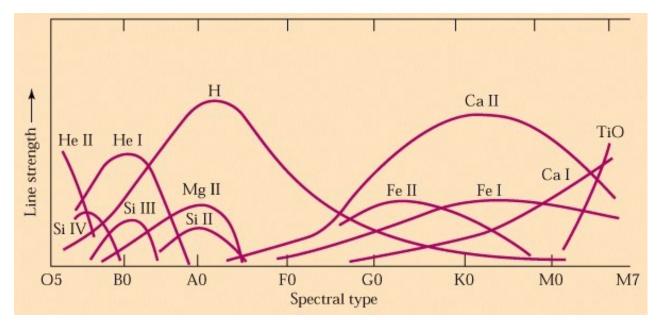
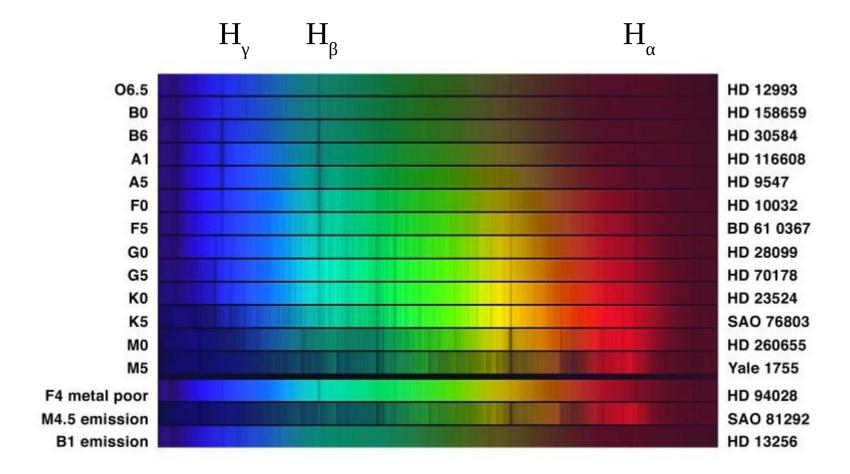



Рис. 118. Фотография звездных спектров, полученная с объективной призмой Для некоторых звезд указан спектральный класс.

Исполнители:


Э. Кэннон, А. Мори, В. Флеминг, 359 082 звезды, 1918-24 гг. и до 1949 г.

Изменение величины поглощения в линиях вдоль спектральной последовательности

Линии Н I наблюд. во всех сп.классах

- O линии He I-II, С III, N III
- B линии Не I, усиление Н I
- A макс.поглощение в H I, появляются Mg II, Ca II
- F появляются линии Mg I, Ca I, Fe I
- G сильные линии нейтр. металлов, полоса G (линии CH)
- K макс.поглощ. Н и К Са II, нейтр. металлы, полоса G
- М линии ТіО

O - B - A - F - G - K - M - L - T - Y

Каждый класс делится на 10 подклассов.

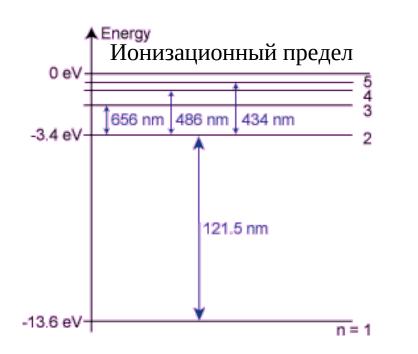
Солнце: G2.

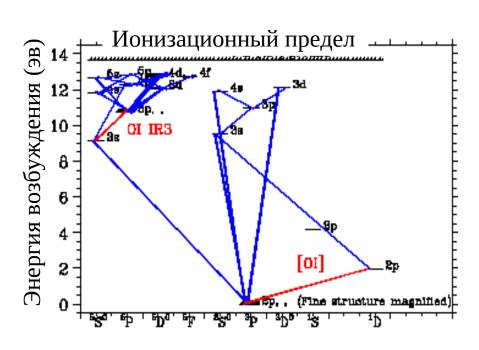
С S Коричневые карлики

C = N, R – углеродные (CN, CH)

S - линии Zr I-II

Физическая интерпретация спектр. последовательности


- Атом = ядро (p, n) + электронная оболочка (1911, Э. Резерфорд) Заряд ядра Z определяет индивидуальность хим.элемента.
- Электроны в атоме двигаются по дискретным орбитам. Каждая имеет свою энергию E_i .


Переход с уровня *i* на уровень *j* путем захвата (поглощения) или излучения кванта с энергией

$$hv_{ij} = E_j - E_i$$

(1913, Н. Бор, квантовая теория атома)

- Каждый атом имеет свой, присущий только ему набор уровней и свою систему спектральных линий.

Уровни энергии в атоме водорода и и разрешенные переходы

кислорода O I

Линии Бальмеровской серии: $2-3~(H_{\alpha}),~4(H_{\beta}),~5(H_{\gamma}),~\dots$ $\lambda(H_{n})=3647~n^{2}/(n^{2}-2^{2})~(Å)$ $H_{\alpha}~6562.8~Å;~H_{\beta}~4861.3~Å;~H_{\gamma}~4340.5~Å,~\lambda_{n}\rightarrow3647~Å$

Количество квантов, поглощенных в линии,

 \sim вероятности перехода (B_{ij} или f_{ij}),

 $\mathbf{B}_{_{\mathbf{i}\mathbf{j}}}$ – коэф-т Эйнштейна, $\mathbf{f}_{_{\mathbf{i}\mathbf{j}}}$ – сила осциллятора

- \sim концентрации атомов на нижнем уровне $n_{_{\mathrm{i}}}$,
- \sim интенсивности излучения $\,I_{\scriptscriptstyle\lambda}$

Доля атомов (ионов) в состоянии i

зависит от энергии возбуждения $E_{
m exc}$ и температуры.

$$rac{n_i}{n_1} = rac{g_i}{g_1} e^{-E_{exc}/kT}$$
 формула Больцмана g_i статистический вес

 $N^{ion} = \Sigma n_{_i}$ - концентрация атомов в стадии ионизации ion .

Спектральная линия не является бесконечно тонкой

• доплеровское уширение: $v = v_0 - v_0 v_x / c$ $v_X^2 = v_t^2 + \xi_t^2$

$$v_X^2 = v_t^2 + \xi_t^2$$

Тепловые движения + микротурб.

- естественное затухание: $\Delta E \cdot \tau = \hbar$ τ время жизни уровня
- уширение эффектами давления: $\Delta E = \frac{a}{r^n}$ n = 2, 3, 4, 6 для разного типа взаимодействующих частиц

Сечение поглощения: $a_{ij}(v) = a_{ij}^{tot} \varphi_v$

Полное сечение поглощения: $a_{ij}^{tot} = \int_{0}^{\infty} a_{ij} dv$

$$\int_{0}^{\infty} \varphi_{v} dv = 1$$

Энергия, поглощённая в линии на частоте *v:*

$$n_i \int a_{ij} I_{\nu} d\omega = n_i B_{ij} J_{\nu} \varphi_{\nu} h v_{ij} \longrightarrow a_{\nu} = B_{ij} \frac{h v_{ij}}{4 \pi} \varphi_{\nu}$$

◆ Профиль Доплеровского уширения

Для звёзд - максвелловское распределение частиц по скоростям:

скорость, от 0.5 до 15 km/s

FWHM = Full width at half maximum: $\Delta v_{FWHM} = 2 \sqrt{\ln 2} \Delta v_D$

Примеры: $\lambda_0 = 5000$ Å

- T = 6000 K, A = 56 (Fe): $\Delta \lambda_D = 0.02 \text{Å}$
- T = 50000 K, A = 1 (H): $\Delta \lambda_D = 0.5 \text{Å}$

Профиль естественного затухания

• профиль естественного затухания
$$\varphi_{v} = \frac{\gamma_{R}/4\pi^{2}}{(v_{0}-v)^{2} + (\gamma_{R}/4\pi)^{2}}$$
 лоренцевский профиль

Постоянная естественного затухания:
$$\gamma_R = \sum_{k < j} A_{jk} + \sum_{l < i} A_{il}$$

А — Эйнштейновский коэффициент спонтанного перехода ј-і

Естественная полу-полуширина:
$$\Delta v_E = \Delta v_R = \frac{\gamma_R}{4 \, \pi}$$
 ($\Delta \lambda_R \sim 10^{-4} \, \text{Å}$) $\phi \left(\Delta v_R \right) = \frac{1}{2} \, \phi \left(\Delta v = 0 \right)$

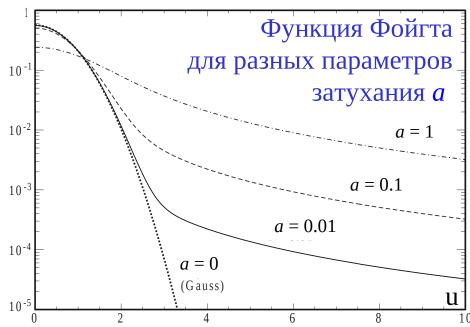
• Уширение эффектами давления

n =	название эффекта	мишень и возмущающая частица
2	линейный эффект Штарка	Н-подобные ионы + р, е
3	резонансное уширение	атомы с себе подобными, Н+Н
4	квадратичный эф-кт Штарка	ионы + е, р
6	уширение ван дер Ваальса	атомы металлов + Н

Резонансное уширение, Квадратичный эффект Штарка, Ван дер Ваальсово уширение

лоренцевский профиль

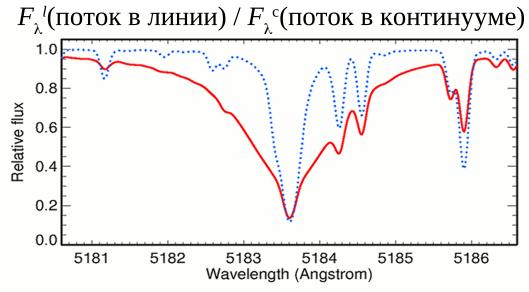
$$\varphi_{v} = \frac{\gamma_{n}/4\pi^{2}}{(v_{0}-v)^{2}+(\gamma_{n}/4\pi)^{2}}$$
 $\gamma_{n} = 2/\tau;$ τ - среднее время между $\tau = 1/\pi \rho_{0}^{2} \text{ v } N$ столкновениями


Линейный эффект Штарка — профили в табличном виде Vidal, Cooper & Smith (1973, VCS), Stehle & Hutcheon (1999, A&AS, 140, 93)

Совместное действие всех уширяющих механизмов

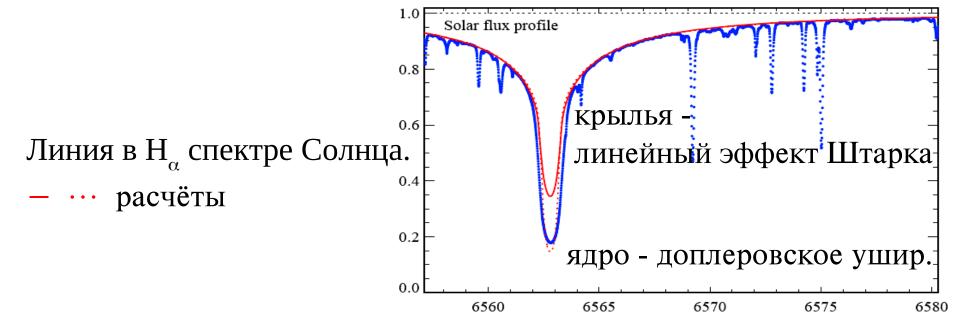
Свёртка профилей → ФОЙГТОВСКИЙ профиль поглощения

$$\varphi_{v} = V(u,a) = \frac{1}{\sqrt{\pi} \Delta v_{D}} \frac{a}{\pi} \int_{-\infty}^{\infty} \frac{e^{-y^{2}}}{(u-y)^{2} + a^{2}} dy$$


Крылья линии:

естественное затухание, эффекты давления.

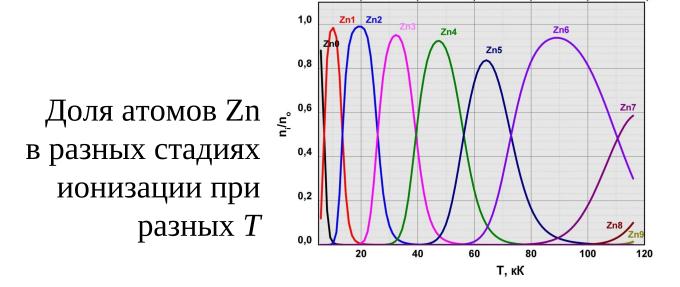
Ядро линии:


доминирует Доплеровское уширение

Примеры спектральных линий

Mg I 5183 Å, $T_{9\phi\phi} = 6000 \text{ K}.$

- низкое давление → только доплеровское ядро;
- рост давления → ван дер Ваальсовские крылья



• Состояние ионизации зависит от T и P газа.

$$rac{N^+}{N^0} N_e = rac{2\,g^+}{g^0} rac{\left(2\,\pi m k T \,
ight)^{3/2}}{h^3} e^{-E_{ion}/kT}$$
 Формула C аха E_{ion} – энергия ионизации

 N^{0} , N^{+} - концентрация атомов в основном состоянии в двух последовательных стадиях ионизации.

Всего атомов элемента:
$$N_{amom} = \sum N^{ion} = N_{H} X_{amom}$$

Zn I:
$$E_{ion} = 9.4 (3B)$$

Zn II: 18

Zn III: 39.7

Zn IV: 59.4

Zn V: 82.6

Zn VI: 108

Zn VII: 136

Энергия ионизации

Водород H I: 13.6 эв,

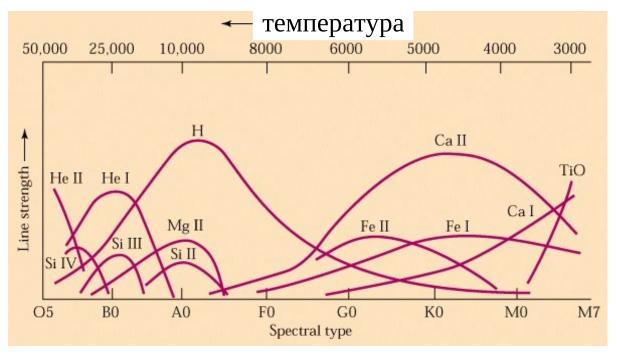
Гелий, He I: 24.6 эв, He II: 54.4 эв

Кальций, Ca I: 6.1 эв, Ca II: 11.9 эв

Железо, Fe I: 7.8 эв, Fe II: 16.2 эв

T = 3000 K: все атомы - нейтральные,

T = 6000 K: H, He — нейтральные,

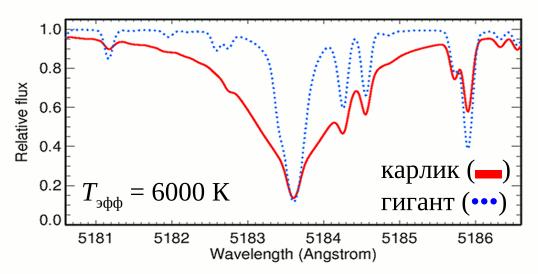

доминируют Ca II, Fe II

T = 15000 K: He - нейтральный,

доминируют H II, Ca III, Fe III

T = 30000 K: H II, He I и He II, Ca IV, Fe V

Изменение величины поглощения в линиях, используемых при спектр. классификации



- \checkmark Н: Бальмер. линии, $E_{\rm exc} = 10.2 \; {
 m эв}.$
- Слабы при низкой *Т* из-за низкой степени возбуждения.
- Увеличение n_2 с ростом T до $10000~{
 m K}.$
- Далее уменьшение n_2 из-за ионизации.
- \checkmark TiO: молекулы не разрушаются только при низких T
- \checkmark Ca I: ионизуется при низких $T \rightarrow$ Ca I падает, Ca II растет
- ✓ Не I: линии с $E_{\rm exc}$ > 19 эв, $n_{\rm i}$ мало вплоть $T\sim 20000$ K.

Спектральный класс характеризует температуру в атмосфере

Классификация по светимости

В группе звёзд с одинаковой степенью ионизации металлов эквивалент. ширина линии может быть различной у разных звезд.

Эквивалентная ширина линии — ширина участка непрерывного спектра, в котором содержится энергия, равная поглощ. в спектральной линии.

Эмпирически: звезды с узкими линиями имеют меньшие собственные движения → более далекие → больше светимость → больше радиус → гиганты (g):

меньше эффекты давления (уширение ван дер Ваальса, квадрат. эф-т Штарка) → слабее крылья линии

Класс светимости характеризует давление в атмосфере

Ia+ или 0 — гипергиганты

I, Ia, Iab, Ib — сверхгиганты

II, IIa, IIb — яркие гиганты

III — гиганты (g)

IV — субгиганты

V — карлики (d)

VI — субкарлики

VII — белые карлики

Карлики, V

R = 0.3 (M5) до 15 (O3) R_{sun}

 $\log g = 4 - 5$

Гиганты, III

R = 40 (M0) до 15 (B0) R_{sun}

 $\log g = 1.3 - 3.3$

Двумерная = Йеркская = Моргана-Кинана (МК) классификация = Sp (Гарвард.класс) + класс светимости

Солнце - G2 V

Арктур - K1.5 IIIp р: пекулярности в спектре

Бетельгейзе – M2 Iab

Двумерная классификация, заметки

$$rac{N^+}{N^0} N_e = rac{2 \, g^+}{g^0} rac{ \left(\, 2 \, \pi m k T \,
ight)^{3/2}}{h^3} e^{-E_{ion}/kT} \quad {
m 3}$$
ависимость от T и $N_{
m e}$ (давления)

- ✓ Одинаковый $Sp \sim$ одинаковая степень ионизации, Fe II/Fe I.
- \checkmark $N_{\rm e}, P_{\rm g}$, ρ (гигант) $< N_{\rm e}, P_{\rm g}$, ρ (карлик) при одной массе.
- ✓ Одинаковая T: у гиганта степень ионизации выше (рекомбинации реже), чем у карлика → Sp (гигант) более ранний.
- ✓ Sp (гигант) = Sp (карлик) \rightarrow T (гигант) < T (карлик).

Шкала эффективных температур $(T_{_{9\phi\phi}})$

Allen's Astrophysical Quantities, 2000, Springer

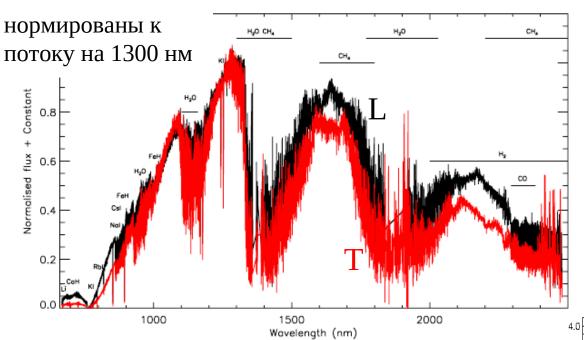
	V	III	I
M5	3170	<u>3380</u>	2880 K
K5	4410	4050	3990 K
G5	5560	5050	4930 K
F5	6650		6370 K
A0	9790		<u>9980</u> K
B5	15200		13600 K
O9	34000		32000 K

O2 52000 K (*Walborn*+2002)

L, T, Y — коричневые карлики (1995 год),

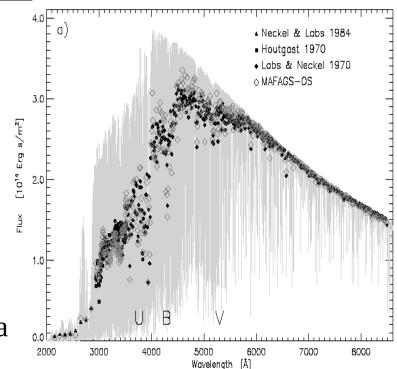
L: линии Na I, K I, TiO, VO, FeH, CrH, MgH, CaH $T_{_{9 \phi \phi}} = 1500$ —2000 K

Т: линии Na I, K I, CH₄ (метан), $T_{\text{эфф}} = 700$ —1500 K,


 \mathbf{Y} : аммиак ? Только в ИК диапазоне, Spitzer $T_{\text{эфф}} \sim 300\text{-}350 \text{ K}.$

- $\checkmark M = 0.012 0.0767 M_{\text{sun}}$ или $12.57 80.35 M_{\text{J}}$.
- ✓ Источник энергии

 $M \approx 20\text{--}70~M_{\mathrm{J}}$ (классы L, T): «горение» D, Li (~10 млн.лет)


 $M > 70 M_{\rm J}$ (класс L): «горение» H (1 Gyr?), D, Li (~10 млн.лет)

 $M < 20 \ M_{\rm J}$ (класс Y): не может быть ядерных реакций Большую часть жизни — остывают.

Спектры коричневых карликов классов L и Т в двойной системе Luhman 16AB

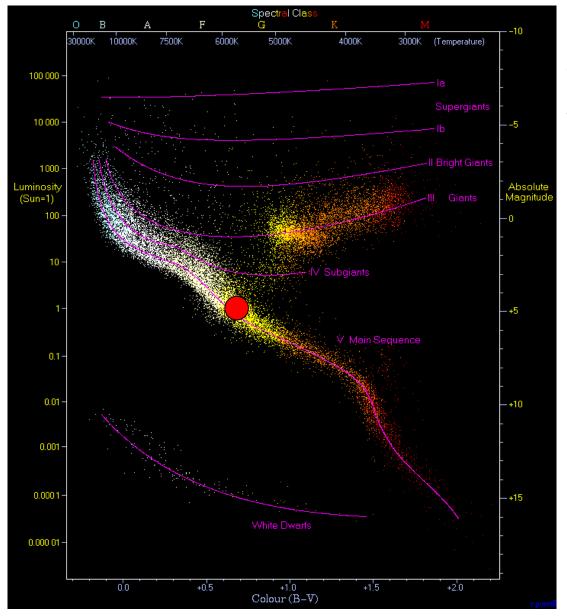
(Lodieu et al. 2015, A&A, 581, A73)

Спектр Солнца

Дополнительные классы

- W звёзды Вольфа-Райе (1867 год): широкие эмиссионные линии Н I или Не I, Не II, NIII − NV или CIII − CIV, OIII − OV
 - \checkmark $T_{\rm эфф} \sim 70000 \, {
 m K}$, высокая светимость (М \sim -6.8^m)
 - \checkmark Расширяющаяся плотная оболочка, V \sim 1000-2000 км/с, потеря вещества \sim 10⁻⁴ 10⁻⁶ $M_{\rm sun}$ / год.
 - ✓ Эволюционный статус гелиевые остатки массивных звёзд.

Дополнительные классы

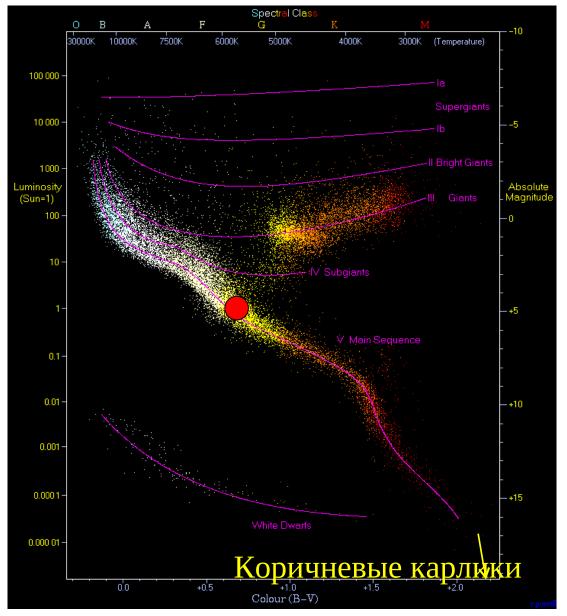

D — белые карлики
 Широкие линии поглощения Н I (DA), Не I (DB),
 в видимом диапазоне нет линий металлов.

- ✓ Sp F-A-B, $T_{9\phi\phi} = 5000 200000$ K,
- \checkmark низкая светимость: $\sim 10^{\text{-4}}~L_{\text{sun}}$, $R \sim 10^{\text{-2}}~R_{\text{sun}}$ Пример: Сириус В компонент в двойной системе (Ф. Бессель, 1844; Э. Кларк, 1862)
- \checkmark $M = 0.6-1.4 M_{\text{sun}}$, плотность $\sim 10^6 \text{ г/см}^3$ (Солнце: 1.4 г/см^3)
- ✓ Плотность и давление определяются свойствами вырожденного электронного газа (*Фаулер*, 1926)
- ✓ Конечная стадия эволюции звёзд с $M < 10~M_{
 m sun}$

Раздел 2. Звезды

2.3. Диаграмма Герцшпрунга-Рассела или спектр-светимость

Диаграмма Герцшпрунга-Рассела


E. Hertzsprung, H.N. Russell обнаружили связь между Sp и светимостью (1910-12)

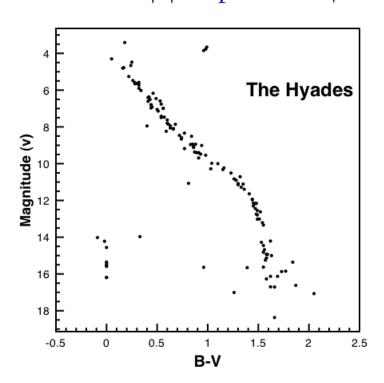
$$\mathrm{Sp} \sim T_{\mathrm{eff}} \sim \mathrm{(B-V)}$$
 $L \sim \mathrm{M_{bol}}$

Диаграмма Г-Р для
22 000 близких звезд
(каталоги Hipparcos и
Gliese).

Главная Последов-ть (ГП) заселена карликами (V) ~ 90% всех звёзд.

Диаграмма Герцшпрунга-Рассела

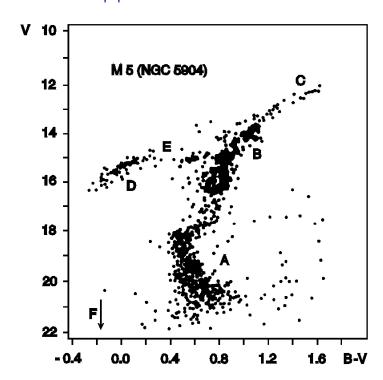
Каждая звезда на ГП


- проводит 90% жизни,
- параметры \sim const,
- положение зависит от массы.

В зависимости от массы и возраста

- ветвь красных гигантов
- белые карлики,
- сверхгиганты

Вернемся к диаграмме Г-Р после эволюции звёзд.


Диаграммы цвет – зв.величина для скоплений

Рассеянное скопление Гиады $M = 400 \ M_{\rm sup}, \ t = 625 \ {\rm млн.лет}$

$\Gamma\Pi$, белые карлики

Причина различий - возраст зв.системы

Шаровое скопление М5 $M=8.6\ 10^5\,M_{\rm sun},\,t=10.6\ {
m Gyr}$

ГП, красные гиганты, горизонтальная ветвь гигантов, белые карлики