
7
Kinetic Theory

So far we have concentrated on collisionless systems, in which the constituent
particles move under the influence of the smoothed-out gravitational field
generated by all the other particles. This approximation is not completely ac-
curate. As described in §1.2, individual stellar encounters1 gradually perturb
stars away from the trajectories they would have taken if the gravitational
field were perfectly smooth; in effect the stars diffuse in phase space away
from their original orbits. After many such encounters the star eventually
loses its memory of the original orbit, and finds itself on a wholly unrelated
one. The characteristic time over which this loss of memory occurs is called
the relaxation time trelax; over timescales exceeding trelax the approximation
of a smooth gravitational potential is incorrect.

The collisionless Boltzmann equation, which has been our main tool so
far, is not valid when encounters are important. Thus we begin this chapter
by reviewing general results about stellar systems that hold in the presence
of encounters (§7.2 and §7.3). The equations that describe the behavior of
stellar systems in the presence of encounters are derived in §7.4, and these
are used to investigate the evolution of spherical stellar systems in §7.5.

1 We generally use the term “encounter” to denote the gravitational perturbation
of the orbit of one star by another, and “collision” to denote actual physical contact
between stars. However, to conform with common use, we use the terms “collisional” or
“collisionless” to describe stellar systems in which encounters do or do not play a role.
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For other discussions of the topics in this chapter, see Hénon (1973b),
Spitzer (1987), and Heggie & Hut (2003).

7.1 Relaxation processes

The relaxation time is of order

trelax ≈
0.1N

ln N
tcross, (7.1)

where tcross is the crossing time and N is the number of stars in the system
(eq. 1.38). The relaxation time exceeds the crossing time if N ∼> 40. Galaxies
typically have N ≈ 1011 and tcross ≈ 100 Myr, so the effects of stellar encoun-
ters can be ignored over a galaxy’s lifetime of 10 Gyr. However, encounters
have played a central role in determining the present structure of many other
stellar systems, such as globular clusters (N ≈ 105, tcross ≈ 105 yr, lifetime
10 Gyr), open clusters (N ≈ 102, tcross ≈ 1 Myr, lifetime 100 Myr), the cen-
tral parsec of galaxies (N ≈ 106, tcross ≈ 104 yr, lifetime 10 Gyr), and the
centers of clusters of galaxies (N ≈ 103, tcross ≈ 1 Gyr, lifetime 10 Gyr).

The fundamental equations describing motion in a collisionless system
of N stars of mass m are the collisionless Boltzmann and Poisson equations
(eqs. 4.7 and 2.10),

∂f

∂t
+ [f, H ] = 0 ; ∇2Φ(x, t) = 4πGmN

∫
d3v f(x,v, t). (7.2)

Here the Hamiltonian H(x,v, t) = 1
2v2 +Φ(x,v, t) and the df f(x,v, t) rep-

resents the probability that a given star is found in unit phase-space volume
near the phase-space position (x,v). In Chapter 4 we developed models of
stellar systems by solving these equations exactly. For example, in spheri-
cal models such as the Hernquist model, the gravitational field is precisely
time-independent and spherical, so each star conserves its energy and angu-
lar momentum. However, in any stellar system with finite N , the energy and
angular momentum of individual stars are not precisely conserved, because
each star is subject to fluctuating forces from encounters with its neighbors.
Therefore the collisionless Boltzmann equation does not provide a complete
description of the dynamics of stellar systems with finite N .

Encounters drive the evolution of a stellar system by several distinct
mechanisms:

(a) Relaxation Each star slowly wanders away from its initial orbit.
As a result of this phase-space diffusion, the entropy of the stellar system
increases, and its structure becomes less sensitive to its initial conditions. We
have seen in §4.10.1 that the high-entropy states of a self-gravitating gas are
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very inhomogeneous, with a dense central core and an extended halo. Thus
we expect that relaxation will drive stellar systems towards configurations
having small, dense cores and large, low-density halos.

(b) Equipartition A typical stellar system contains stars with a wide
range of masses. From elementary kinetic theory we know that encounters
tend to produce equipartition of kinetic energy: on average, particles with
large kinetic energy 1

2mv2 lose energy to particles with less kinetic energy.
In an ordinary gas, this process leads to a state in which the mean-square
velocity of a population of particles is inversely proportional to mass. By
contrast, in a stellar system, massive stars that lose kinetic energy fall deeper
into the gravitational potential well, and may even increase their kinetic
energy as a result, just as an Earth satellite speeds up as it loses energy
from atmospheric drag. Conversely, less massive stars preferentially diffuse
towards the outer parts of the stellar system, where the velocity dispersion
may be smaller.

(c) Escape From time to time an encounter gives a star enough energy
to escape from the stellar system. Thus there is a slow but irreversible
leakage of stars from the system, so stellar systems gradually evolve towards
a final state consisting of only two stars in a Keplerian orbit, all the others
having escaped to infinity. The timescale over which the stars “evaporate”
in this way can be related to the relaxation timescale by the following simple
argument (Ambarzumian 1938; Spitzer 1940). From equation (2.31) the
escape speed ve at x is given by v2

e (x) = −2Φ(x). The mean-square escape
speed in a system whose density is ρ(x) is therefore

⟨v2
e ⟩ =

∫
d3x ρ(x)v2

e (x)∫
d3x ρ(x)

= −2

∫
d3x ρ(x)Φ(x)

M
= −

4W

M
, (7.3)

where M and W are the total mass and potential energy of the system
(eq. 2.18). According to the virial theorem (4.250), −W = 2K, where K =
1
2M⟨v2⟩ is the total kinetic energy. Hence

⟨v2
e ⟩1/2 = 2⟨v2⟩1/2; (7.4)

in words, the rms escape speed is just twice the rms speed. The fraction of
particles in a Maxwellian distribution that have speeds exceeding twice the
rms speed is γ = 7.38 × 10−3 (Problem 4.18). We can crudely assume that
evaporation removes a fraction γ of the stars every relaxation time. Then
the rate of loss is

dN

dt
= −

γN

trelax
≡ −

N

tevap
, (7.5)

where the evaporation time, the characteristic time in which the system’s
stars are lost, is tevap = trelax/γ ≃ 140 trelax. Thus we expect that any
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stellar system will lose a substantial fraction of its stars in about 102trelax
(see §7.5.2).

(d) Inelastic encounters So far we have treated stars as point masses,
but in dense stellar systems we must consider the possibility that two stars
occasionally pass so close that they raise powerful tides on one another or
even suffer a physical collision. Energy dissipation in near-collisions reduces
the total kinetic energy of the system and can lead to the formation of binary
stars. Head-on or nearly head-on collisions can result in the coalescence of
the colliding stars, leading to the otherwise unexpected presence of massive,
short-lived stars in an old stellar system.

The characteristic timescale on which a star suffers a collision is given
approximately by

tcoll ≈ (nΣv)−1, (7.6)

where n is the number density of stars, Σ is the collision cross-section, and
v is the rms stellar velocity. We may write n ≈ N/r3, where r is the radius
of the system, and Σ ≈ π(2r⋆)2, where r⋆ is the stellar radius (neglecting
gravitational focusing; a more precise result is given in eq. 7.194). In terms
of the crossing time tcross ≈ r/v,

tcoll
tcross

≈
r2

4πNr2
⋆

. (7.7)

From the virial theorem we have v2 ≈ GNm/r where m is the stellar mass;
it proves convenient to use this relation to eliminate r in favor of v. We
also eliminate r⋆ in favor of the escape speed from the stellar surface, v⋆ =√

2Gm/r⋆ (v⋆ = 618 km s−1 for the Sun). Then

tcoll
tcross

≈ 0.02N
(v⋆

v

)4
. (7.8)

In terms of the relaxation time (eq. 7.1),

tcoll
trelax

≈ 0.2
(v⋆

v

)4
ln N. (7.9)

For systems in which the escape speed from individual objects is much larger
than the rms orbital velocity (such as open and globular clusters, and most
galaxies), we have tcoll ≫ trelax, so inelastic encounters play only a minor
role in determining the overall structure of the stellar system. However,
such encounters can occasionally produce exotic single or binary stars, which
provide direct evidence of recent non-gravitational interactions.

(e) Binary formation by triple encounters A binary star cannot form
in an isolated encounter of two point masses, because the relative motion is
always along a hyperbola. However, an encounter involving three stars can
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leave two of the participants in a bound Keplerian orbit. It is simple to
estimate the rate of formation of binaries by this process. We showed in
equation (1.30) that the velocity perturbation in an encounter of two stars
of mass m and relative velocity v is δv ≈ Gm/bv, where b is the distance of
closest approach. We may rewrite this as

δv

v
≈

b90

b
, where b90 ≈

Gm

v2
(7.10)

is the impact parameter at which the relative velocity is deflected by 90◦ in
the encounter (see eq. 3.51 for a precise definition). If three stars approach
one another within a distance b, we expect the velocity perturbations to be
of similar magnitude. Thus, to form a binary by a triple encounter, we must
have δv ≈ v, which requires b ≈ b90. For a given star, the time interval
between encounters with other stars at separation b90 or less is of order
(nb2

90v)−1 (eq. 7.6). In each such encounter, there is a probability nb3
90 that

a third star will also lie within a distance b90. Hence the time t3 required
for a given star to suffer a triple encounter at separation less than b90 is
t3 ≈ (n2b5

90v)−1. Substituting for b90 from equation (7.10), we find the time
required for a given star to become part of a binary by a triple encounter to
be (Goodman & Hut 1993)

t3 ≈
v9

n2G5m5
. (7.11)

Using the virial theorem, v2 ≈ GNm/r, we may express t3 in terms of the
relaxation time (eq. 7.1):

t3
trelax

≈ 10N2 ln N. (7.12)

Hence the total number of binaries formed per relaxation time is only

Ntrelax
t3

≈
0.1

N ln N
. (7.13)

Since the system dissolves after the evaporation time of about 102trelax, the
rate of binary formation by triple encounters is negligible if N is much larger
than 10. We discuss binary formation and evolution further in §7.5.7.

(f) Interactions with primordial binaries The many binary stars
found in the solar neighborhood were produced when their component stars
were formed, rather than by subsequent triple or inelastic encounters. It
is likely that binary stars are similarly produced during the formation of
globular and open clusters. These are called primordial binary stars to
distinguish them from binaries formed by dynamical processes long after
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their constituent stars. Gravitational forces during encounters transfer en-
ergy between the orbits of primordial binaries and other cluster stars. Such
energy exchange can dramatically alter the energy balance in the cluster,
even if binaries are rare, because the binding energy in the binary orbit
can be much larger than the kinetic energy of a typical cluster star. Con-
sider, for example, a globular cluster with mass M = 105 M⊙ and rms

velocity ⟨v2⟩1/2 = 10 km s−1. From the virial theorem, its binding energy
is − 1

2M⟨v2⟩ = 1050 erg. A binary star consisting of two 1M⊙ stars with
a separation of 2 R⊙ has a binding energy of 1 × 1048 erg. Thus, 100 such
binaries contain as much binding energy as the whole cluster of 105 stars.

7.2 General results

7.2.1 Virial theorem

In Chapter 4 we used the collisionless Boltzmann equation to prove the tensor
virial theorem (eqs. 4.241 and 4.247),

1
2

d2Ijk

dt2
= 2Kjk + Wjk, (7.14)

which relates the tensor Ijk of an isolated stellar system to the kinetic-
and potential-energy tensors, Kjk and Wjk . We now show that with slight
modifications this result also holds for collisional systems.
Proof: Consider a system of particles with masses mα and positions xα,α =
1, . . . , N . We define the tensor (cf. eq. 4.243)

Ijk ≡
N∑

α=1

mαxαjxαk, (7.15)

where xαj is the jth Cartesian component of the vector xα. The second time
derivative of Ijk is

d2Ijk

dt2
=

N∑

α=1

mα (xαj ẍαk + 2ẋαj ẋαk + ẍαjxαk) . (7.16)

The acceleration of particle α is

ẍαj =
N∑

β=1
β ̸=α

Gmβ

(
xβj − xαj

)

|xβ − xα|3
; (7.17)
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substituting this result and a similar formula for ẍαk into equation (7.16) we
find

d2Ijk

dt2
= 2

N∑

α=1

mαẋαj ẋαk

+
N∑

α,β=1
β ̸=α

Gmαmβ

|xα − xβ |3
[
xαj

(
xβk − xαk

)
+ xαk

(
xβj − xαj

)]
.

(7.18)
By analogy with equation (4.240b), we define the kinetic-energy tensor for a
system of point particles to be

Kjk ≡ 1
2

N∑

α=1

mαẋαj ẋαk. (7.19)

By analogy with equations (2.21a) and (2.22), we define the potential-energy
tensor for a system of point particles as2

Wjk = G
N∑

α,β=1
β ̸=α

mαmβ
xαj(xβk − xαk)

|xα − xβ |3

= − 1
2G

N∑

α,β=1
β ̸=α

mαmβ
(xαj − xβj)(xαk − xβk)

|xα − xβ |3
,

(7.20)

where the second line is obtained by interchanging the indices α and β in the
first line and averaging this result with the first line. From the second line
we conclude that W is symmetric, that is, Wjk = Wkj . The second term
on the right side of equation (7.18) is just Wjk + Wkj = 2Wjk, and the first
term is 4Kjk, so we have successfully arrived at equation (7.14).▹

The most useful form of the virial theorem is obtained by taking the
trace of the tensor I, I ≡ trace (I) ≡

∑3
j=1 Ijj . Furthermore, we assume that

the system is in a steady state, so d2I/dt2 = 0. The trace of equation (7.18)
then becomes the scalar virial theorem 2K + W = 0 (eq. 4.248), where now

K = trace (K) = 1
2

N∑

α=1

mαv2
α ; W = trace (W) = − 1

2

N∑

α,β=1
α̸=β

Gmαmβ

|xα − xβ |

(7.21)

2 We can justify these analogies, at least formally, by replacing the continuous density
ρ(x) in (2.21a) and (2.22) by a sum of delta functions: ρ(x) =

PN
α=1 mαδ(x − xα).
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are the total kinetic and potential energies.
The only approximation involved in deriving the scalar virial theorem

is that I is time-independent. This is a good approximation for equilibrium
stellar systems with N ≫ 1, but in a system with a small number of particles
there are statistical fluctuations in I, so the scalar virial theorem holds only
for the time-averaged values of K and W .

7.2.2 Liouville’s theorem

We have argued that the collisionless Boltzmann equation cannot provide
a complete description of the dynamics of a stellar system with finite N .
We now discuss a generalization of the collisionless Boltzmann equation that
remedies this shortcoming, at least formally. We represent the state of a
system of N stars by a point in a 6N -dimensional space, called Γ-space,
whose coordinates are the positions and velocities of all the stars. This state
is sometimes called a microstate and its representative point a Γ-point. In
practice, we do not have—and do not want—the detailed information that is
required to specify a microstate. We are concerned only with the “average”
behavior of the macroscopic properties of the system (density distribution,
velocity distribution at a given position, fraction of binary stars, etc.). Thus
it is useful to imagine that at some initial time we are given the probability
that a system is found in each small volume in Γ-space, and to follow the
evolution of this probability distribution, rather than the evolution of a single
Γ-point. There is an obvious analogy to the methods of Chapter 4, where
we found it simpler to follow the evolution of the probability density in six-
dimensional phase space, rather than the orbits of individual stars.

Denote the position and velocity of the αth particle by the canonical
coordinates qα,pα, where α = 1, . . . , N (normally qα and pα are the position
and velocity, but they could be any canonical coordinates and momenta).
Then the six-dimensional vector wα ≡ (qα,pα) denotes the location of a
particle in phase space. The Γ-point of a system in the 6N -dimensional
Γ-space is determined by the collection of N six-vectors w1, . . . ,wN . The
probability that a Γ-point is found in a unit volume of Γ-space at time t is
denoted by f (N)(w1, . . . ,wN , t); since the probability density integrates to
unity we have

∫
d6w1 · · · d6wN f (N)(w1, . . . ,wN , t) = 1, where d6wα ≡ d3qα d3pα.

(7.22)
The function f (N) is the N-body distribution function or N-body df.

For the sake of simplicity, we shall usually assume that all the particles
are identical (same mass, composition, etc.)—it is straightforward to modify
the derivations below when several different kinds of particle are present.
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Since the particles are identical, the N-body df can be taken to be a sym-
metric function of w1, . . . ,wN . In other words,

f (N)(. . . ,wα, . . . ,wβ , . . .) = f (N)(. . . ,wβ, . . . ,wα, . . .) for all α, β.
(7.23)

The equation governing the evolution of f (N) is analogous to the col-
lisionless Boltzmann equation governing the evolution of the phase-space
density f (§4.1). In fact, to derive the equation for f (N) we need only rein-
terpret the 3-dimensional vectors q and p in that section as 3N -dimensional
vectors (q1, . . . ,qN ), (p1, . . . ,pN ). Then the analogs of equations (4.7)–
(4.10) are

∂f (N)

∂t
+

N∑

α=1

(
q̇α ·

∂f (N)

∂qα
+ ṗα ·

∂f (N)

∂pα

)
= 0; (7.24)

∂f (N)

∂t
+
[
f (N), HN

]
= 0; (7.25)

df (N)

dt
= 0; (7.26)

where d/dt is the convective derivative in Γ-space, and [·, ·] denotes the Pois-
son bracket in Γ-space. In other words the flow of Γ-points through Γ-space is
incompressible: the probability density of Γ-points f (N) around the Γ-point
of a given system always remains constant. This is Liouville’s theorem,
and equations (7.24)–(7.26) are Liouville’s equation.3

If (i) we work in an inertial frame, (ii) we choose our canonical coordi-
nates and momenta to be the positions xα and velocities vα, and (iii) our
particles have mass m and interact only through their mutual gravitation,
then Liouville’s equation can be written in the form

∂f (N)

∂t
+

N∑

α=1

(
vα ·

∂f (N)

∂xα
−

N∑

β=1
β ̸=α

∂Φαβ
∂xα

·
∂f (N)

∂vα

)
= 0, (7.27)

where Φαβ = −Gm/|xα − xβ |.
Any N-body df of the form

f (N)(w1, . . . ,wN ) = f [HN(w1, . . . ,wN )] (7.28)

3 We adopt the convention that the collisionless Boltzmann equation applies to 6-
dimensional phase space and Liouville’s equation applies to 6N-dimensional Γ-space, al-
though some authors use the term Liouville’s equation in both cases. With our convention,
Liouville’s equation is actually not due to Liouville. It was first explicitly derived by Gibbs
(1884), two years after Liouville’s death. Gibbs was also the first to recognize its impor-
tance in astronomy. It might therefore be better called the Gibbs equation.
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is a solution of Liouville’s equation. The proof is an obvious extension of the
Jeans theorem (§4.2). In thermal equilibrium, we would have

f (N)(w1, . . . ,wN ) = C exp[−βHN (w1, . . . ,wN )], (7.29)

where C and β are positive constants. Thermal equilibrium cannot be
achieved in a gravitational N-body system because the normalization condi-
tion (7.22) cannot be satisfied for a df of the form (7.29).4

7.2.3 Reduced distribution functions

We now investigate how the N-body df f (N)(w1, . . . ,wN , t) is related to
the usual df in six-dimensional phase space, f(w, t) (§4.1). We introduce
first the reduced or K-body distribution function, which is obtained by
integrating the N-body df over N −K of the six-vectors wα. Since f (N) is a
symmetric function of the wα (eq. 7.23), without loss of generality we may
choose the integration variables to be wK+1, . . . ,wN . Thus we define

f (K)(w1, . . . ,wK , t) ≡
∫

d6wK+1 · · · d6wN f (N)(w1, . . . ,wN , t). (7.30)

From equation (7.22), the normalization of the K-body df is simply

∫
d6w1 · · ·d6wK f (K)(w1, . . . ,wK , t) = 1. (7.31)

The one-body df is

f (1)(w1, t) ≡
∫

d6w2 · · · d6wN f (N)(w1, . . . ,wN , t). (7.32)

The one-body df describes the probability of finding a particular star in
a unit volume of phase space centered on w1. This is the same as the
definition of the phase-space df in §4.1, and therefore we are free to simplify
our notation by writing

f(w, t) = f (1)(w, t). (7.33)

In many situations, it is useful to write the two-body df in the form

f (2)(w1,w2, t) = f(w1, t)f(w2, t) + g(w1,w2, t). (7.34)

4 The integral diverges at both large and small scales. When the particles are separated
by large distances, f (N) depends on velocity but is independent of position, so the spatial
integral diverges. When two particles α and β approach one another, Φαβ diverges so
exp(−βHN ) becomes extremely large.
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The function g is called the two-body correlation function; the termi-
nology is borrowed from probability theory, where the variables x and y are
said to be uncorrelated if the joint probability p(x, y) can be factored into a
product of the form px(x)py(y). Loosely speaking, the two-body correlation
function measures the excess probability of finding a particle at w1 due to
the presence of a particle at w2. A more precise statement can be derived
from the laws of conditional probability (eq. B.85), which state that the
probability that a star is located in a unit volume of phase space centered
on w1, given that a star is known to be located at w2, is

f(w1|w2) =
f (2)(w1,w2)∫

d6w′
1f

(2)(w′
1,w2)

=
f(w1)f(w2) + g(w1,w2)

f(w2) +
∫

d6w′
1 g(w′

1,w2)
. (7.35)

In particular, if the correlation function g(w1,w2) = 0, then f(w1|w2) =
f(w1); in other words, the presence of a star at w2 has no effect on the
probability of finding a star near w1.

The use of reduced dfs can be illustrated by computing the expectation
value of the kinetic and potential energy for a stellar system. From equation
(7.21), the expectation of the kinetic energy is

⟨K⟩ = 1
2m

∫
d6w1 · · ·d6wN f (N)(w1, . . . ,wN , t)

N∑

α=1

v2
α; (7.36)

since the stars are identical, this simplifies to

⟨K⟩ = 1
2Nm

∫
d6w1 f(w1, t)v

2
1 . (7.37)

Similarly, any observable that involves only quantities that depend additively
on the phase-space coordinates of single stars can be expressed in terms of
the one-body df. Such observables include density, surface brightness, line-
of-sight velocity distribution, metallicity distribution, etc.

The expectation of the potential energy is

⟨W ⟩ = − 1
2

∫
d6w1 · · · d6wN f (N)(w1, . . . ,wN , t)

N∑

α,β=1
α̸=β

Gm2

|xα − xβ |
. (7.38)

Since the stars are identical, and there are N(N − 1) ways in which we can
choose two distinct stars α and β from N , this simplifies to

⟨W ⟩ = − 1
2Gm2N(N − 1)

∫
d6w1d

6w2
f (2)(w1,w2, t)

|x2 − x1|
. (7.39)



7.2 General results 565

Thus the potential energy depends only on the two-body df. If the cor-
relation function is small, that is, if |g(w1,w2, t)| ≪ f(w1)f(w2), then for
N ≫ 1 the potential energy simplifies to

W = − 1
2Gm2N2

∫
d6w1d

6w2
f(w1, t)f(w2, t)

|x2 − x1|
= 1

2

∫
d3x ρ(x)Φ(x),

(7.40)
which is the expression we have used in prior chapters (eq. 2.18).

7.2.4 Relation of Liouville’s equation to the collisionless
Boltzmann equation

The N-body df is said to be separable if it is simply the product of one-body
dfs, that is, if

f (N)(w1, . . . ,wN , t) =
N∏

β=1

f(wβ, t). (7.41)

As we have seen, this assumption implies that the positions of stars are
uncorrelated, in the sense that the probability of finding a star near any
phase-space position w1 is unaffected by the presence or absence of stars
at nearby points. We now assume that the N-body df is separable, and
ask for the equation governing the evolution of the one-body df f . To
find this, we integrate Liouville’s equation (7.27) over d6w2 · · · d6wN . The
term involving ∂f (N)/∂t simply yields ∂f(w1, t)/∂t. The term involving
∂f (N)/∂xα yields zero if α = 2, . . . , N because

∫
d3xα ∂f (N)/∂xα = 0 so

long as f (N) → 0 sufficiently fast as |xα| → ∞. The integration of the term
involving ∂f (N)/∂vα yields zero if α = 2, . . . , N for a similar reason. Thus
we obtain

∂f(w1, t)

∂t
+ v1 ·

∂f(w1, t)

∂x1

−
∂f(w1, t)

∂v1
·

N∑

β=2

∫
d6w2 · · · d6wN

∂Φ1β

∂x1

N∏

α=2

f(wα, t) = 0.
(7.42)

Each term in the sum is identical, and
∫

d6w f(w, t) = 1, so this becomes

∂f(w1, t)

∂t
+ v1 ·

∂f(w1, t)

∂x1
− (N − 1)

∂f(w1, t)

∂v1
·
∫

d6w2
∂Φ12

∂x1
f(w2, t) = 0.

(7.43)
The expectation value of the gravitational potential at x1 is

Φ(x1, t) = N

∫
d6w2 Φ12f(w2, t), (7.44)
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so equation (7.43) simplifies to

∂f(w, t)

∂t
+ v ·

∂f(w, t)

∂x
−

N − 1

N

∂Φ(x, t)

∂x

∂f(w, t)

∂v
= 0. (7.45)

In the limit N → ∞ this becomes the collisionless Boltzmann equation (4.11).
Thus we have shown that the collisionless Boltzmann equation results from
the Liouville equation when N ≫ 1 and the N-body df is separable.

If the df is not separable and N ≫ 1, it is straightforward to show that
equation (7.45) must be replaced by

df

dt
= Γ[f ], (7.46)

where Γ[f ] is the encounter operator, given by

Γ[f(w1, t)] ≡ N

∫
d6w2

∂Φ12

∂x1
·
∂g(w1,w2, t)

∂v1
, (7.47)

and g is the two-body correlation function (eq. 7.34). Thus the correlations
between particles in phase space, as measured by g(w1,w2, t), drive the rate
of change of the phase-space density around a given star, given by Γ[f ].

We can determine the encounter operator Γ[f ] in two ways. The first ap-
proach is through the correlation function. Just as we derived equation (7.46)
for the one-body df by integrating Liouville’s equation over d6w2 · · · d6wN ,
we can derive an equation for the correlation function—or, what is equiv-
alent, the two-body df f (2)(w1,w2, t)—by integrating Liouville’s equation
over d6w3 · · ·d6wN . Unfortunately, just as equation (7.46) for the one-body
df depends on the two-body df through the appearance of g(w1,w2, t) on
the right side, the equation for the two-body df depends on the three-body
df.5 However, in the limit where the number of stars N → ∞, while the
total mass mN remains constant, we can neglect the contribution of the
three-body correlation function to the equation governing the two-body df.
The resulting equation can be solved to determine the two-body correlation
function, and this can be substituted into equation (7.47) to determine the
encounter operator (Gilbert 1968; Lifshitz & Pitaevskii 1981).

A more physical approach, which we take in §7.4, is to ask how encoun-
ters between stars modify the one-body df. This approach is only practical
when the encounters can be approximated as localized in both time and
space; fortunately, we shall see that this approximation is remarkably accu-
rate for most stellar systems.

5 Continuing in this way, we would obtain a sequence of equations of rapidly increasing
complexity, each expressing the rate of change of f (n) in terms of f (n+1). This sequence
is known as the BBGKY hierarchy, after N. N. Bogoliubov, M. Born and H. S. Green,
J. G. Kirkwood, and J. Yvon, who all discovered the equations independently between
1935 and 1946.


