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Figure 1.4 If the density of stars
were everywhere the same, the stars
in each of the shaded segments of a
cone would contribute equally to the
force on a star at the cone’s apex.
Thus the acceleration of a star at
the apex is determined mainly by
the large-scale distribution of stars in
the galaxy, not by the star’s nearest
neighbors.

the star at the apex with a force proportional to r−2×r2×r = r. This simple
argument shows that the force on the star at the apex is dominated by the
most distant stars in the system, rather than by its closest neighbors. Of
course, if the density of attracting stars were exactly spherical, the star at
the apex would experience no net force because it would be pulled equally
in all directions. But in general the density of attracting stars falls off in one
direction more slowly than in the opposing direction, so the star at the apex
is subject to a net force, and this force is determined by the structure of the
galaxy on the largest scale. Consequently—in contrast to the situation for
molecules—the force on a star does not vary rapidly, and each star may be
supposed to accelerate smoothly through the force field that is generated by
the galaxy as a whole. In other words, for most purposes we can treat the
gravitational force on a star as arising from a smooth density distribution
rather than a collection of mass points.

1.2.1 The relaxation time

We now investigate this conclusion more quantitatively, by asking how accu-
rately we can approximate a galaxy composed of N identical stars of mass
m as a smooth density distribution and gravitational field. To answer this
question, we follow the motion of an individual star, called the subject star,
as its orbit carries it once across the galaxy, and seek an order-of-magnitude
estimate of the difference between the actual velocity of this star after this
interval and the velocity that it would have had if the mass of the other stars
were smoothly distributed. Suppose the subject star passes within distance
b of another star, called the field star (Figure 1.5). We want to estimate
the amount δv by which the encounter deflects the velocity v of the subject
star. In §3.1d we calculate δv exactly, but for our present purposes an ap-
proximate estimate is sufficient. To make this estimate we shall assume that
|δv|/v ≪ 1, and that the field star is stationary during the encounter. In this
case δv is perpendicular to v, since the accelerations parallel to v average to
zero. We may calculate the magnitude of the velocity change, δv ≡ |δv|, by
assuming that the subject star passes the field star on a straight-line trajec-
tory, and integrating the perpendicular force F⊥ along this trajectory. We
place the origin of time at the instant of closest approach of the two stars,
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Figure 1.5 A field star approaches
the subject star at speed v and im-
pact parameter b. We estimate the
resulting impulse to the subject star
by approximating the field star’s tra-
jectory as a straight line.

and find in the notation of Figure 1.5,
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But by Newton’s laws
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In words, δv is roughly equal to the acceleration at closest approach, Gm/b2,
times the duration of this acceleration 2b/v. Notice that our assumption of
a straight-line trajectory breaks down, and equation (1.30) becomes invalid,
when δv ≃ v; from equation (1.30), this occurs if the impact parameter
b ∼< b90 ≡ 2Gm/v2. The subscript 90 stands for a 90-degree deflection—see
equation (3.51) for a more precise definition.

Now the surface density of field stars in the host galaxy is of order
N/πR2, where N is the number of stars and R is the galaxy’s radius, so in
crossing the galaxy once the subject star suffers
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N

πR2
2πb db =
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R2
b db (1.31)

encounters with impact parameters in the range b to b + db. Each such en-
counter produces a perturbation δv to the subject star’s velocity, but because
these small perturbations are randomly oriented in the plane perpendicular
to v, their mean is zero.10 Although the mean velocity change is zero, the
mean-square change is not: after one crossing this amounts to
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R2
b db. (1.32)

10 Strictly, the mean change in velocity is zero only if the distribution of perturbing
stars is the same in all directions. A more precise statement is that the mean change
in velocity is due to the smoothed-out mass distribution, and we ignore this because the
goal of our calculation is to determine the difference between the acceleration due to the
smoothed mass distribution and the actual stars.
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Integrating equation (1.32) over all impact parameters from bmin to bmax, we
find the mean-square velocity change per crossing,

∆v2 ≡
∫ bmax

bmin

∑
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)2

ln Λ, (1.33a)

where the factor

ln Λ ≡ ln

(
bmax

bmin

)
(1.33b)

is called the Coulomb logarithm. Our assumption of a straight-line tra-
jectory breaks down for impact parameters smaller than b90, so we set
bmin = f1b90, where f1 is a factor of order unity. Our assumption of a
homogeneous distribution of field stars breaks down for impact parameters
of order R, so we set bmax = f2R. Then

ln Λ = ln

(
R

b90

)
+ ln(f2/f1). (1.34)

In most systems of interest R ≫ b90 (for example, in a typical elliptical
galaxy R/b90 ∼> 1010), so the fractional uncertainty in ln Λ arising from the
uncertain values of f1 and f2 is quite small, and we lose little accuracy by
setting f2/f1 = 1.

Thus encounters between the subject star and field stars cause a kind
of diffusion of the subject star’s velocity that is distinct from the steady
acceleration caused by the overall mass distribution in the stellar system.
This diffusive process is sometimes called two-body relaxation since it
arises from the cumulative effect of myriad two-body encounters between
the subject star and passing field stars.

The typical speed v of a field star is roughly that of a particle in a
circular orbit at the edge of the galaxy,

v2 ≈
GNm

R
. (1.35)

If we eliminate R from equation (1.33a) using equation (1.35), we have

∆v2

v2
≈

8 ln Λ

N
. (1.36)

If the subject star makes many crossings of the galaxy, the velocity v will
change by roughly ∆v2 at each crossing, so the number of crossings nrelax

that is required for its velocity to change by of order itself is given by

nrelax ≃
N

8 ln Λ
. (1.37)
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The relaxation time may be defined as trelax = nrelaxtcross, where
tcross = R/v is the crossing time, the time needed for a typical star to
cross the galaxy once. Moreover Λ = R/b90 ≈ Rv2/(Gm), which is ≈ N by
equation (1.35). Thus our final result is

trelax ≃
0.1N

ln N
tcross. (1.38)

After one relaxation time, the cumulative small kicks from many encoun-
ters with passing stars have changed the subject star’s orbit significantly from
the one it would have had if the gravitational field had been smooth. In ef-
fect, after a relaxation time a star has lost its memory of its initial conditions.
Galaxies typically have N ≈ 1011 stars and are a few hundred crossing times
old, so for these systems stellar encounters are unimportant, except very
near their centers. In a globular cluster, on the other hand, N ≈ 105 and
the crossing time tcross ≈ 1 Myr (Table 1.3), so relaxation strongly influences
the cluster structure over its lifetime of 10 Gyr.

In all of these systems the dynamics over timescales ∼< trelax is that of
a collisionless system in which the constituent particles move under the
influence of the gravitational field generated by a smooth mass distribution,
rather than a collection of mass points. Non-baryonic dark matter is also
collisionless, since both weak interactions and gravitational interactions be-
tween individual wimps are negligible in any galactic context.

In most of this book we focus on collisionless stellar dynamics, confin-
ing discussion of the longer-term evolution that is driven by gravitational
encounters among the particles to Chapter 7.

1.3 The cosmological context

This section provides a summary of the aspects of cosmology that we use
in this book. For more information the reader can consult texts such as
Weinberg (1972), Peebles (1993), and Peacock (1999).

To a very good approximation, the universe is observed to be homoge-
neous and isotropic on large scales—here “large” means ∼> 100 Mpc, which
is still much smaller than the characteristic “size” of the universe, the Hub-
ble length c/H0 = 4.3h−1

7 Gpc where 1 Gpc = 109 pc = 103 Mpc and c is
the speed of light. Therefore a useful first approximation is to average over
the small-scale structure and treat the universe as exactly homogeneous and
isotropic. Of course, the universe does not appear isotropic to all observers:
an observer traveling rapidly with respect to the local matter will see galaxies
approaching in one direction and receding in another. Therefore we define
a set of fundamental observers, who are at rest with respect to the mat-
ter around them.11 The universe is expanding, so we may synchronize the

11 A more precise definition is that a fundamental observer sees no dipole component
in the cosmic microwave background radiation (§1.3.5).


