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density ρ(r) as

ρ(rj) =
N∑

i=1

wiρi(rj) where ρi(r) ≡
∫

d3v fi(E, L) (4.202)

is the density produced by the family of orbits that have the given energy
and total angular momentum, but all possible orientations of the orbital
plane. For given values of ρ(rj) these equations define a linear programming
problem for the weights in the same way that equation (4.200) does. In fact,
the only difference between these equations is that in one case the galaxy is
decomposed into individual orbits, and in the other a symmetry principle is
used to group orbits into families within which all orbits must have the same
weight, and then the galactic density is written as a sum of the densities
contributed by each family.

Schwarzschild modeling has been extensively used to search for massive
black holes at the centers of luminous spheroids (e.g. Richstone & Tremaine
1985; van der Marel et al. 1998; Gebhardt et al. 2003), the results of which are
summarized by the correlation (1.27) between black-hole mass and spheroid
velocity dispersion. In §4.9.1 we shall see why reliable black-hole masses
can be obtained only with sophisticated dynamical modeling of the obser-
vational data. Schwarzschild modeling has also been used to model the
large-scale dynamics of early-type galaxies, thus constraining the mass den-
sities and orbital distributions in these systems (Cappellari et al. 2006 and
§4.9.2). Unfortunately, the inference of confidence intervals on the values of
model parameters, such as black-hole masses and mass-to-light ratios, when
Schwarzschild’s method is used to fit a model to observational data, proves to
be a subtle matter (Magorrian 2006), and published values should be treated
with some caution.

4.8 The Jeans and virial equations

In §4.1.2 we saw that comparisons between theoretical models and observa-
tional data often center on velocity moments of the df, such as v and vivj .
Calculating moments is easy if one knows the df, but finding a df that is
compatible with a given probability density distribution ν(x) is not straight-
forward, and even if a df can be found, it is often not unique. Therefore in
this section we discuss techniques for inferring moments from stellar densi-
ties without actually recovering the df. Dejonghe (1986) gives an extensive
discussion of this problem.

Integrating equation (4.11) over all velocities, we obtain

∫
d3v

∂f

∂t
+

∫
d3v vi

∂f

∂xi
−
∂Φ

∂xi

∫
d3v

∂f

∂vi
= 0, (4.203)
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where we have employed the summation convention (page 772). The range
of velocities over which we are integrating does not depend on time, so the
partial derivative ∂/∂t in the first term of this equation may be taken outside
the integral. Similarly, since vi does not depend on xi, the partial derivative
∂/∂xi in the second term of the equation may be taken outside the integral
sign. Furthermore, the last term on the left side of the equation vanishes on
application of the divergence theorem (eq. B.46), given that f(x,v, t) = 0
for sufficiently large |v|, i.e., there are no stars that move infinitely fast.
Recalling the definitions of the density ν (eq. 4.20) and the mean velocity v
(eq. 4.24b), we have that

∂ν

∂t
+
∂(νvi)

∂xi
= 0. (4.204)

Equation (4.204) differs from the continuity equation (F.3) only in that it
describes conservation of probability rather than that of mass, and replaces
the fluid velocity by the mean stellar velocity.

We now multiply equation (4.11) by vj and integrate over all velocities,
and obtain

∂

∂t

∫
d3v fvj +

∫
d3v vivj

∂f

∂xi
−
∂Φ

∂xi

∫
d3v vj

∂f

∂vi
= 0. (4.205)

The last term on the left side can be transformed by applying the divergence
theorem, using the fact that f vanishes for large |v|:

∫
d3v vj

∂f

∂vi
= −

∫
d3v

∂vj

∂vi
f = −

∫
d3v δijf = −δijν. (4.206)

Thus equation (4.205) may be rewritten

∂(νvj)

∂t
+
∂(νvivj)

∂xi
+ ν

∂Φ

∂xj
= 0. (4.207)

This can be put into a more familiar form by subtracting from it vj times
the equation of continuity (4.204) to yield

ν
∂vj

∂t
− vj

∂(νvi)

∂xi
+
∂(νvivj)

∂xi
= −ν

∂Φ

∂xj
, (4.208)

and then using the definition (4.26) of the velocity-dispersion tensor to elim-
inate vivj . The result is an analog of Euler’s equation (F.7) of fluid flow;

ν
∂vj

∂t
+ νvi

∂vj

∂xi
= −ν

∂Φ

∂xj
−
∂(νσ2

ij)

∂xi
. (4.209)
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The left side and the first term on the right side of equation (4.209) differ
from terms in the ordinary Euler equation only by the replacement of the
mass density by the probability density, and by the replacement of the fluid
velocity by the mean stellar velocity. The last term on the right side of
equation (4.209) represents something akin to the pressure force −∇p. More
exactly, −νσ2

ij is a stress tensor that describes an anisotropic pressure.
Since equations (4.204) and (4.209) were first applied to stellar dynamics by
Jeans (1919), we call them the Jeans equations.16

Equations (4.204) and (4.209) are valuable because they relate obser-
vationally accessible quantities, such as the streaming velocity, velocity dis-
persion, and so forth. However, this is an incomplete set of equations in the
following sense. If we know the potential Φ(x, t) and the density ν(x, t), we
have nine unknown functions—the three components of v and the six inde-
pendent components of the symmetric tensor σ2—but only four equations—
the scalar continuity equation and the three components of Euler’s equation.
Thus we cannot solve for v and σ2 without additional information. The
reader may argue that if we multiply the collisionless Boltzmann equation
(4.11) through by vivk and integrate over all velocities, we obtain a new set
of differential equations for σ2 which might supply the missing information.
Unfortunately, these equations involve quantities like vivjvk for which we
would require still further equations. Thus these additional equations are
of no use unless we can in some way truncate or close this regression to
ever higher moments of the velocity distribution. We shall find that closure
is possible only in special circumstances, for example when the system is
spherical and we know that its df is ergodic, f(H) (Box 4.3), or when the
system is axisymmetric and its df is of the form f(H, Lz). The equations
can also be closed for any Stäckel potential (van de Ven et al. 2003).

4.8.1 Jeans equations for spherical systems

To obtain the Jeans equations in spherical coordinates, we start from the col-
lisionless Boltzmann equation in the form (4.14), which involves the canonical
momenta

pr = ṙ = vr ; pθ = r2θ̇ = rvθ ; pφ = r2 sin2 θφ̇ = r sin θ vφ. (4.210)

We have
∫

dprdpθdpφ f = r2 sin θ

∫
dvrdvθdvφ f = r2 sin θ ν. (4.211)

We assume that the system is spherical and time-independent, so we can drop
∂Φ/∂θ, ∂Φ/∂φ, ∂f/∂t and ∂f/∂φ from (4.14); we retain ∂f/∂θ because any

16 They were originally derived by Maxwell, but he already has a set of equations named
after him.
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dependence of f on vφ is likely to introduce θ-dependence through the last of
equations (4.210) when vφ is expressed in terms of pφ. After simplification,
equation (4.14) becomes

pr
∂f

∂r
+

pθ
r2

∂f

∂θ
−
(dΦ

dr
−

p2
θ

r3
−

p2
φ

r3 sin2 θ

) ∂f

∂pr
+

p2
φ cos θ

r2 sin3 θ

∂f

∂pθ
= 0. (4.212)

We now multiply by pr dprdpθdpφ and integrate over all momenta. With
equation (4.211) and similar results, and using the divergence theorem to
eliminate derivatives with respect to the momenta, we find

∂

∂r

(
r2 sin θ νp2

r

)
+

∂

∂θ
(sin θ νprpθ) + r2 sin θ ν

(
dΦ

dr
−

p2
θ

r3
−

p2
φ

r3 sin2 θ

)
= 0.

(4.213)
In any static spherical system, prpθ = rvrvθ must vanish because the df is of
the form f(H,L), and is therefore an even function of vr. Finally, dividing
through by r2 sin θ and using equations (4.210) we obtain

d(νv2
r )

dr
+ ν

(
dΦ

dr
+

2v2
r − v2

θ − v2
φ

r

)
= 0. (4.214)

In terms of the anisotropy parameter of equation (4.61), equation (4.214)
reads

d(νv2
r )

dr
+ 2

β

r
νv2

r = −ν
dΦ

dr
. (4.215)

Additional Jeans equations can be obtained by multiplying (4.212) by pθ or
pφ, but these are not useful.

If the line-of-sight velocity dispersion has been measured as a function
of radius, equation (4.215) can be used to constrain the radial dependence
of β. The most direct approach is to assume a functional form for β(r)
and treat (4.215) as a first-order linear differential equation for νv2

r . The
integrating factor is exp(2

∫
dr β/r), so the solution can be written in closed

form. Different choices of β(r) yield different predictions for the line-of-sight
velocity dispersion as a function of radius (see Problem 4.28), so β can be
constrained by optimizing the fit between predictions obtained from (4.215)
and the observed velocity-dispersion profile.

The case of constant non-zero β is particularly simple. Then the solution
of (4.215) that satisfies the boundary condition limr→∞ v2

r = 0 is

v2
r(r) =

1

r2βν(r)

∫ ∞

r
dr′ r′2βν(r′)

dΦ

dr′
. (4.216)

Effect of a central black hole on the observed velocity dispersion
We can use this equation to assess the impact of a central massive black hole
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Box 4.3: Closure of the Jeans
equations when the DF is ergodic

We have shown that the Jeans equations are not closed, in the sense that
v2

r and β cannot both be determined from ν and Φ. However, if the
df is known to be ergodic, f(H), then β = 0 and v2

r is determined by
equation (4.216). Moreover, all of the nth-order velocity moments can
be determined from vn

r (Problem 4.29). A differential equation for vn
r

is obtained when we multiply (4.212) by pn−1
r dprdpθdpφ and integrate

over all momenta. For example, with n = 4 we find

d(νv4
r )

dr
= −3ν

(
v2

r
dΦ

dr
+

2
3v4

r − v2
rv2
θ − v2

rv2
φ

r

)
β=0
= −3νv2

r
dΦ

dr
, (1)

where the first equality is valid for any spherical system and the second is
obtained by assuming that f = f(H) and using the relation v2

rv2
θ = 1

3v4
r

from (4.308). Once v2
r(r) is known, we can solve (1) for v4

r (r) and from
that derive the other fourth-order moments. Then we can solve a similar
equation for v6

r (r) and so on up to whatever moment we desire. When
moments up to order n ∼ 10 have been determined, accurate predictions
of losvds can be made (Magorrian & Binney 1994). These predictions
will be identical to those one could have obtained from Eddington’s for-
mula (4.46b) for f but will not enable us to check that f is non-negative.

on the host galaxy’s velocity-dispersion profile. We assume that the galaxy
has a constant mass-to-light ratio and is a Hernquist model of scale-length
a—from equations (2.64) and (2.67), the density and potential are

ν(r) =
1

2πa2

1

r(1 + r/a)3
; Φ(r) = −

GMg

r + a
−

GµMg

r
, (4.217)

where µ = M•/Mg is the ratio of the black-hole mass M• to the galaxy mass
Mg. Hence

v2
r(ax) =

GMg

a

(1 + x)3

x2β−1

∫ ∞

x
dx′

(
x′2β−1

(1 + x′)5
+

µ x′2β−3

(1 + x′)3

)
. (4.218)

For integer values of 4β the integrals are elementary. For example with
y ≡ 1 + x we have

av2
r(ax)

GMg
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

5(1 + 2µ)x2y3 ln(x/y) + µy3(1
3 − 3

2x + 6x2)/x

+x2[14 + 2
3y + 3+µ

2 y2 + 4(1 + µ)y3]/y + xy3 (β = − 1
2 ),

(1 + 6µ)xy3 ln(y/x) − µy3(3x − 1
2 )/x

−x[ 14 + 1
3y + 1+µ

2 y2 + (1 + 3µ)y3]/y (β = 0),
3µy3 ln(x/y) + 1/4y + µy( 1

2 + 2y + y2/x) (β = 1
2 ).

(4.219)
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Figure 4.20 Velocity dispersion as a function of radius for three Hernquist models with a
central black hole of mass 0, 0.002Mg, or 0.004Mg. The bottom panel shows line-of-sight
dispersions, the top panel shows the rms speed as a function of radius. The full curves
are for tangential bias (β = −0.5), the dotted curves are for the isotropic model and
the dashed curves are for radial bias (β = 0.5). The beads mark the radius of influence
(eq. 4.220) of the black hole in each model, while the arrows mark the dynamical radius
of the black hole, at which the interior mass of the galaxy equals the mass of the black
hole.

The top panel of Figure 4.20 shows the rms speed vrms = (v2
r + v2

θ + v2
φ)

1/2

that follows from these formulae for µ = 0, µ = 0.002, and µ = 0.004 (bottom
to top). The full curves are for tangentially biased models, the dotted curves
for isotropic models, and the dashed curves are for radially biased models. In
each case the black hole causes the rms speed to rise at small radii where its
deep potential well speeds up the stars. The lower panel shows the associated
line-of-sight dispersions. At small radii the upturn in σ∥ is much less sharp
than that in vrms, because the signal from stars near the black hole is diluted
by the light from foreground and background stars. Note also that the rise
in dispersion associated with the black hole is difficult to distinguish from
the rise in dispersion associated with radial anisotropy.

The black hole’s radius of influence Rinfl is defined to be the radius
at which the Kepler speed due to the hole is equal to σ∥. Quantitatively,

Rinfl =
GM•

σ2
∥(Rinfl)

= 11
M•

108 M⊙

( σ∥
200 km s−1

)−2
pc. (4.220)

In Figure 4.20 Rinfl is marked by a black dot on each relevant curve of σ∥(R).
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It can be seen that at Rinfl the black hole has increased σ∥ by a few percent,
and that the contribution to σ∥ from the black hole increases fairly rapidly
interior to Rinfl.

Another measure of the radial extent of the black hole’s influence is the
dynamical radius rg of the black hole, at which the gravitational forces
from the black hole and the galaxy are equal, or, equivalently, the radius
within which the galactic mass is equal to the black-hole mass. The dynami-
cal radius rg, unlike the radius of influence Rinfl, depends only on the galaxy’s
mass distribution and not its kinematics. Orbits with apocenters inside rg

will be nearly Keplerian. The vertical arrows in Figure 4.20 mark rg for
the two black-hole masses considered. For the tangential models, rg is only
slightly larger than Rinfl, while in the radially biased models, rg ∼ 7Rinfl.

This discussion demonstrates that a major obstacle to detecting a central
black hole using stellar kinematics is the degeneracy between the mass of
the black hole and velocity anisotropy. This degeneracy can be lifted by
obtaining data with higher spatial resolution than assumed in Figure 4.20.
Alternatively, we can exploit the information contained in the entire losvd

rather than just its second moment (§4.9.1).

4.8.2 Jeans equations for axisymmetric systems

For simplicity we assume that the system under study is in a steady state
and axisymmetric so all derivatives with respect to t and φ vanish. With
these assumptions (4.12) becomes

pR
∂f

∂R
+ pz

∂f

∂z
−
(
∂Φ

∂R
−

p2
φ

R3

)
∂f

∂pR
−
∂Φ

∂z

∂f

∂pz
= 0. (4.221)

We multiply this equation by pR, integrate over the momenta pR = vR,
pφ = Rvφ, pz = vz , and then express the momenta in terms of velocities. In
close analogy with our derivation of equation (4.215) we obtain

∂(νv2
R)

∂R
+
∂(νvRvz)

∂z
+ ν

(
v2

R − v2
φ

R
+
∂Φ

∂R

)
= 0. (4.222a)

When we multiply (4.221) by pz or pφ rather than pR, we obtain

1

R

∂(RνvRvz)

∂R
+
∂(νv2

z)

∂z
+ ν

∂Φ

∂z
= 0, (4.222b)

1

R2

∂(R2νvRvφ)

∂R
+
∂(νvzvφ)

∂z
= 0. (4.222c)

If we assume that the density ν(R, z) and the confining potential Φ(R, z) are
known, equations (4.222) constitute three constraints on the six second-order
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Box 4.4: Two useful formulae

If we obtain ν by integrating f(H, Lz) over all velocities, the resulting
expression will depend on z only through Φ(R, z). In these circumstances
it is advantageous to consider ν to be a function of (R, Φ) and equation
(4.223) yields

νv2
R(R, z) =

∫ 0

Φ(R,z)
dΦ′ ν(R, Φ′) (1)

Multiplying equation (4.224) by ν and using (1) we obtain

νv2
φ =

∂

∂R

(
R

∫ 0

Φ
dΦ′ ν(R, Φ′)

)
+ νR

∂Φ

∂R
.

In the first term on the right we carry the factor R inside the integral
and then use the standard formula

d

dx

∫ 0

f(x)
dy g(x, y) =

∫ 0

f(x)
dy

∂g

∂x
− g(x, f)

df

dx

to establish that

νv2
φ =

∫ 0

Φ
dΦ′ ∂

∂R
[Rν(R, Φ′)] . (2)

velocity moments. Thus, just as in the spherical case, the Jeans equations
are not closed. However, if the df is known to be of the form f(H, Lz),

the mixed moments in these equations will vanish, v2
R = v2

z , and the third
equation becomes trivial. So we have two equations for two unknowns, and
the system is closed. Specifically, (4.222b) can be integrated to yield (Nagai
& Miyamoto 1976)

v2
R(R, z) = v2

z(R, z) =
1

ν(R, z)

∫ ∞

z
dz′ ν(R, z′)

∂Φ

∂z′
. (4.223)

Now that v2
R is known, we can obtain v2

φ from (4.222a):

v2
φ(R, z) = v2

R +
R

ν

∂(νv2
R)

∂R
+ R

∂Φ

∂R
. (4.224)

Proceeding similarly with higher-order Jeans equations obtained by multi-
plying (4.221) by pk+1

z pn−k−2
φ for k = 0, 1, . . . , n− 2 and by pRpn−2

φ , we can
relate all the n-order moments to either ν(R, z) or νvφ(R, z), depending on
whether n is even or odd (Magorrian & Binney 1994). These moments will
be identical to those one would have obtained by using the Hunter–Qian
algorithm to calculate f(E , Lz) from the same data (§4.4.1).

(a) Asymmetric drift Figure 4.17 shows that in the solar neighborhood
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the distribution of high-velocity stars is strongly asymmetric, in the sense
that there are more stars lagging the lsr than leading it. We saw on page 325
that this phenomenon is nicely explained by the surface-density and velocity-
dispersion gradients in the disk, and more quantitatively by Figure 4.16, but
from equation (4.222a) we can easily recover its most important aspect, which
is the asymmetric drift (page 326)

va ≡ vc − vφ, (4.225)

where vc is the circular speed in the solar neighborhood. We consider the
values of va of a sequence of stellar populations, each with its own value of
v2

R.
We assume that the disk is in a steady state and is symmetric about

its equator. Then, since the Sun lies close to the galactic equator, we may
evaluate equation (4.222a) at z = 0. Since ∂ν/∂z = 0 by symmetry, we find

R

ν

∂(νv2
R)

∂R
+ R

∂(vRvz)

∂z
+ v2

R − v2
φ + R

∂Φ

∂R
= 0 (z = 0). (4.226)

Using equation (4.26) to replace v2
φ by the azimuthal velocity dispersion σ2

φ

and using R(∂Φ/∂R) = v2
c , we obtain

σ2
φ − v2

R −
R

ν

∂(νv2
R)

∂R
− R

∂(vRvz)

∂z
= v2

c − v2
φ

= (vc − vφ) (vc + vφ) = va(2vc − va).

(4.227)

If we neglect va compared to 2vc, we obtain Stromberg’s asymmetric drift
equation

va ≃
v2

R

2vc

[
σ2
φ

v2
R

− 1 −
∂ ln(νv2

R)

∂ ln R
−

R

v2
R

∂(vRvz)

∂z

]

. (4.228)

The value of the square bracket does not depend on the scale of the velocity-
dispersion tensor vivj , but only on the ratios of its components. So if two
populations have similar density distributions ν(R, z) and velocity ellipsoids
of the same shape and orientation, the square bracket will take the same
value for both populations. Hence in this case va ∝ v2

R. Figure 4.21 shows
that a relationship of this type holds for main-sequence stars near the Sun.
The horizontal axis shows the dispersions in the velocities normal to the line
of sight for stars in each population. The vertical axis shows the average
amount by which the stars lag the azimuthal motion of the Sun. Each data
point is for one bin in stellar color B − V . The redder bins contain older
stars, which have larger dispersions S because stars are gradually accelerated
by fluctuations in the gravitational potential (§8.4). The intersection of the
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Figure 4.21 The asymmetric drift va for different stellar types is a linear function of the
random velocity S2 of each type. The vertical coordinate is actually va +evφ,⊙ where evφ,⊙
is the azimuthal velocity of the Sun relative to the lsr (after Dehnen & Binney 1998b).

best-fit line with S = 0, at v⊙ = 5 km s−1, represents the velocity of the Sun
relative to the lsr.

It is interesting to compare the numerical value of the square bracket
in equation (4.228) with the slope of the straight-line fit to the data in Fig-

ure 4.21. From BM Table 10.2 we adopt σ2
φ/v2

R = 0.35 and we assume that

ν and v2
R are both proportional to e−R/Rd with R0/Rd = 3.2 (Table 1.2)—

this assumption regarding the radial dependence of the velocity dispersion
is justified following equation (4.156). Then the bracket’s first three terms
sum to 5.8. The last term is problematic because its value depends on the
orientation of the velocity ellipsoid at points just above the plane of our
Galaxy, which is difficult to measure. Two extreme possibilities are that (i)
the ellipsoid’s principal axes are aligned with the coordinate directions of
the (R,φ, z) system, and (ii) the principal axes are aligned with the coordi-
nate directions of the (r, θ,φ) system centered on the galactic center. Orbit
integrations (Binney & Spergel 1983) suggest that the truth lies nearly mid-
way between these two possibilities. In the first case vRvz is independent
of z and the term vanishes, and in the second vRvz ≃ (v2

R − v2
z)(z/R) (see

Problem 4.34) and the term contributes −(1 − v2
z/v2

R) ≃ −0.8. Averaging
these values we estimate the value of the square bracket at 5.4 ± 0.4, so
va ≃ v2

R/(82 ± 6 km s−1). From the data shown in Figure 4.21 one infers

va = v2
R/(80 ± 5 km s−1) in beautiful agreement with theory.

(b) Spheroidal components with isotropic velocity dispersion We
know that if an axisymmetric system has a df of the form f(H, Lz) then two
eigenvalues of the velocity-dispersion tensor σ2 are equal (eq. 4.40). We now
use the Jeans equations to predict the rotation rate of a spheroidal system
in which all three eigenvalues of σ2 are equal, that is, an isotropic rotator.
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From the definition (4.26) of σ2 and this assumption we have

v2
φ = v2

φ + σ2
φ = v2

φ + v2
R, (4.229)

so equation (4.224) yields

v2
φ(R, z) = R

∂Φ

∂R
+

R

ν

∂(νv2
R)

∂R
. (4.230)

When we use equation (4.223) to eliminate νv2
R we have

v2
φ(R, z) = R

∂Φ

∂R
+

R

ν

∂

∂R

∫ ∞

z
dz′ ν(R, z′)

∂Φ

∂z′
. (4.231)

Suppose both ν(R, z) and Φ(R, z) are constant on spheroids, which will be
nearly true in many realistic cases. Then we can write ν(q2

νR
2 + ζ) and

Φ(q2
ΦR2 + ζ) where qν < 1 is the axis ratio of the isodensity surfaces, qΦ is

the axis ratio of the equipotentials, and ζ ≡ z2. Consequently, ∂ν/∂R2 =
q2
ν(∂ν/∂ζ) and ∂Φ/∂R2 = q2

Φ(∂Φ/∂ζ). We convert the derivative in equation
(4.231) into one with respect to R2, carry it under the integral sign, and use
these relations to obtain

v2
φ(R, z) = R

∂Φ

∂R
+

2R2

ν

∫ ∞

z2

dζ

(
q2
ν
∂ν

∂ζ

∂Φ

∂ζ
+ q2

Φν
∂2Φ

∂ζ2

)

= R
∂Φ

∂R
+ (q2

ν − q2
Φ)

2R2

ν

∫ ∞

z2

dζ
∂ν

∂ζ

∂Φ

∂ζ
− 2R2q2

Φ
∂Φ

∂ζ

∣∣∣∣
z2

,

(4.232)

where the second equality is obtained by integrating by parts the term with
the second derivative of Φ. We now observe that

2R2q2
Φ
∂Φ

∂ζ
= 2R2 ∂Φ

∂R2
= R

∂Φ

∂R
. (4.233)

Hence the last term on the right of (4.232) cancels the first term, and we
have finally

v2
φ(R, z) = (q2

ν − q2
Φ)

2R2

ν

∫ ∞

z2

dζ
∂ν

∂ζ

∂Φ

∂ζ
. (4.234)

Since ∂Φ/∂z > 0 and ∂ν/∂z < 0, the integral is negative and vφ ∝
√

q2
Φ − q2

ν .
If the isodensity surfaces coincide with the equipotentials, qΦ = qν and vφ =
0, but normally the equipotentials are less flattened than the equidensity
surfaces, and even a small excess in the flattening of the density distribution
gives rise to appreciable rotation.

As an illustration of the use of equation (4.234), suppose Φ and ν are
given by

Φ = 1
2v2

0 ln
(
R2

c + q2
ΦR2 + z2

)
; ν = K

(
R2

c + q2
νR

2 + z2
)−3/2

, (4.235)
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where v0, Rc and K are constants. These functional forms are appropriate
to the case of a galaxy that has a distribution of luminous matter consistent
with a modified Hubble model (eq. 2.53) and an asymptotically flat circular-
speed curve. Then the integral in equation (4.234) evaluates to

∫ ∞

z2

dζ
∂ν

∂ζ

∂Φ

∂ζ
= − 3

4Kv2
0

∫ ∞

z2

dζ

(R2
c + q2

ΦR2 + ζ)(R2
c + q2

νR2 + ζ)5/2

= −
3
2Kv2

0

(R2
c + q2

ΦR2 + z2)5/2

1

δ4

(
sin−1δ

δ
+

4
3δ

2 − 1

(1 − δ2)3/2

)
.

(4.236a)
where

δ2 ≡
(q2

Φ − q2
ν)R

2

R2
c + q2

ΦR2 + z2
. (4.236b)

To understand how this rather cumbersome formula works, we expand in
powers of δ before substituting into equation (4.234) to obtain

v2
φ(R, z) = 3

5v2
0

(
R2

c + q2
νR

2 + z2

R2
c + q2

ΦR2 + z2

)3/2[
δ2 + 25

14δ
4 + O(δ6)

]
. (4.237)

At R, z ≪ Rc, δ ∝ R so vφ ∝ R and there is solid-body rotation. Beyond Rc

in the equatorial plane δ becomes independent of R and

vφ/v0 →
√

3
5 (1 − q2

ν/q2
Φ) (qν/qΦ)3/2. (4.238)

Observations indicate that within the effective radius of a typical luminous
galaxy, the mass distribution is dominated by stars (Gerhard et al. 2001;
Cappellari et al. 2006). From §2.3.2 we know that the ellipticity ϵν ≡ 1− qν
of the density distribution that generates the logarithmic potential (4.235)
is ≃ 3ϵΦ = 3(1 − qΦ). When we use this relation in equation (4.238), we

find that vφ/v0 =
√

4
5 ϵν + O(ϵ2ν). In Figure 4.14 the dotted curve shows

the relationship v/σ ∝
√
ϵ, and one sees that this proportionality provides

a reasonable fit to the data for Evans models. It lies below the data for
Rowley models, because these are not isotropic rotators. The filled circles,
which show the data for low-luminosity spheroids, scatter around the dotted
curve, although there is a tendency for the points to lie below the curve for
ϵ ∼< 0.5 and above the curve at higher ellipticities. Thus these data suggest
that low-luminosity spheroids are nearly isotropic rotators.

4.8.3 Virial equations

We obtained the Jeans equation (4.207) by multiplying the collisionless Boltz-
mann equation by vj and integrating over all velocities. In this process an
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equation in the six phase-space coordinates for a single scalar quantity f was
reduced to partial differential equations for ν and the velocity moments in
the three spatial coordinates. We now multiply equation (4.207) by xk and
integrate over all positions, thus converting these differential equations into a
simple tensor equation relating global properties of the galaxy, such as total
kinetic energy and mean-square streaming velocity.

We multiply equation (4.207) by Mxk, where M is the total mass of the
system. Then since the mass density is ρ(x) = Mν(x), integrating over the
spatial variables we find

∫
d3xxk

∂(ρvj)

∂t
= −

∫
d3xxk

∂(ρvivj)

∂xi
−
∫

d3x ρxk
∂Φ

∂xj
. (4.239)

The second term on the right side is the potential-energy tensor W (eq. 2.19).
The first term on the right side of equation (4.239) can be rewritten with
the aid of the divergence theorem (B.45):

∫
d3xxk

∂(ρvivj)

∂xi
= −

∫
d3x δkiρvivj = −2Kkj , (4.240a)

where we have assumed that ρ vanishes at large radii and have defined the
kinetic-energy tensor

Kjk ≡ 1
2

∫
d3x ρvjvk. (4.240b)

With the help of equation (4.26) we split K up into the contributions from
ordered and random motion:

Kjk = Tjk + 1
2Πjk, (4.241a)

where

Tjk ≡ 1
2

∫
d3x ρvjvk ; Πjk ≡

∫
d3x ρσ2

jk. (4.241b)

The derivative with respect to time in equation (4.239) may be taken outside
the integral sign because xk does not depend on time. Finally, averaging the
(k, j) and the (j, k) components of equation (4.239), we obtain

1
2

d

dt

∫
d3x ρ (xkvj + xjvk) = 2Tjk + Πjk + Wjk. (4.242)

Here we have exploited the symmetry under exchange of indices of T, Π (see
eq. 4.241b) and W (see eq. 2.22).
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The left side of equation (4.242) may be brought to a more intuitive
form if we define the tensor17 I by

Ijk ≡
∫

d3x ρxjxk. (4.243)

Differentiating I with respect to time, we have

dIjk

dt
=

∫
d3x

∂ρ

∂t
xjxk. (4.244)

With the continuity equation (4.204), the right side of this equation becomes

−
∫

d3x
∂(ρvi)

∂xi
xjxk =

∫
d3x ρvi (xkδji + xjδki) , (4.245)

where the equality follows by an application of the divergence theorem. Sub-
stituting this expression back into equation (4.244) yields

dIjk

dt
=

∫
d3x ρ (xkvj + xjvk) . (4.246)

We now combine equations (4.242) and (4.246) to obtain the tensor virial
theorem:

1
2

d2Ijk

dt2
= 2Tjk + Πjk + Wjk. (4.247)

Equation (4.247) enables us to relate the gross kinematic and morphological
properties of galaxies.18 In many applications the left side is simply zero
since the galaxy is time-independent.

(a) Scalar virial theorem The trace of the potential-energy tensor is
the system’s total potential energy W (eq. 2.23). Equations (4.240b) show
that K ≡ trace(T) + 1

2 trace(Π) is the total kinetic energy of the system.

Thus, if the system is in a steady state, Ï = 0, and the trace of equation
(4.247) becomes

2K + W = 0. (4.248)

Equation (4.248) is a statement of the scalar virial theorem.19 The kinetic
energy of a stellar system with mass M is just K = 1

2M⟨v2⟩, where ⟨v2⟩ is

17 The tensor defined by equation (4.243) is sometimes called the “moment of inertia
tensor” but we reserve this name for the related tensor that is defined by equation (D.41).

18 Equation (4.247) has here been derived from the collisionless Boltzmann equation,
which is only valid for a collisionless system, but we shall find in §7.2.1 that an analogous
result is valid for any system of N mutually gravitating particles. However, it should be
noted that (4.247) applies only to self-gravitating systems. Similar results may be derived
for systems embedded in an externally generated gravitational field; see Problems 3.12
and 4.38.

19 First proved by R. Clausius in 1870; Clausius also defined the virial of a system of N
particles as

PN
i miri · vi. The theorem was first applied to stellar systems by Eddington

(1916a). Einstein (1921) used it to estimate the mass of globular clusters.
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the mean-square speed of the system’s stars. Hence the virial theorem states
that

⟨v2⟩ =
|W |
M

=
GM

rg
, (4.249a)

where rg is the gravitational radius defined by equation (2.42). One often
wishes to estimate ⟨v2⟩ without going to the trouble of calculating rg. Spitzer
(1969) noted that in simple stellar systems the half-mass radius rh, which
is easily measured, is tightly correlated with rg. For example, the Jaffe and
Hernquist models (§2.2.2g) have rh/rg = 1

2 and 0.402, respectively, while
for spherical galaxies that have radius-independent mass-to-light ratios and
satisfy the Sérsic law (1.17) in projection, rh/rg ranges from 0.414 for m = 2
to 0.526 for m = 6 (Ciotti 1991). Moreover, we saw in §4.3.3c that along
the sequence of King models rh/rg is confined to the interval (0.4, 0.51)
(Figure 4.10). Hence, a useful approximation is

⟨v2⟩ =
|W |
M

≃ 0.45
GM

rh
. (4.249b)

If E is the energy of the system, we have from equation (4.248) that

E = K + W = −K = 1
2W. (4.250)

Thus if a system forms by collecting material together from a state of rest at
infinity (in which state, K = W = E = 0), and then settles by any process
into an equilibrium condition, it invests half of the gravitational energy that
is released by the collapse in kinetic form, and in some way disposes of the
other half in order to achieve a binding energy Eb = −E equal to its kinetic
energy. For example, suppose that our Galaxy formed by aggregating from
an initial radius that was much larger than its present size. Then, since most
of the galactic material is now moving at about vc ≃ 200 km s−1, whether
on circular orbits in the disk or on eccentric and highly inclined halo orbits,
we have that Eb = K ≈ 1

2Mgv2
c of energy must have been released when the

Galaxy formed, where Mg is the mass of the Galaxy. This argument suggests
that as they form, galaxies radiate a fraction 1

2 (vc/c)2 ≃ 3 × 10−7 of their
rest-mass energy.

(b) Spherical systems We may use the scalar virial theorem (4.248) to
evaluate the mass-to-light ratio Υ of a non-rotating spherical galaxy under
the assumption that Υ is independent of radius. We choose a coordinate
system in which the line of sight to the galaxy center coincides with the x
axis. Then the kinetic energy associated with motion in the x-direction is

Kxx = 1
2

∫
d3x ρv2

x. (4.251)


