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But from either (3.47) or (3.48) we see that the point of closest approach
is reached when ψ = ψ0. Since the orbit is symmetrical about this point,
the angle through which the reduced particle’s velocity is deflected is θdefl =
2ψ0−π (see Figure 3.2). It proves useful to define the 90◦ deflection radius
as the impact parameter at which θdefl = 90◦:

b90 ≡
G(M + m)

V 2
0

. (3.51)

Thus

θdefl = 2 tan−1

(
G(M + m)

bV 2
0

)
= 2 tan−1(b90/b). (3.52)

By conservation of energy, the relative speed after the encounter equals the
initial speed V0. Hence the components ∆V∥ and ∆V⊥ of ∆V parallel and
perpendicular to the original relative velocity vector V0 are given by

|∆V⊥| = V0 sin θdefl = V0| sin 2ψ0| =
2V0| tanψ0|
1 + tan2 ψ0

=
2V0(b/b90)

1 + b2/b2
90

, (3.53a)

|∆V∥| = V0(1 − cos θdefl) = V0(1 + cos 2ψ0) =
2V0

1 + tan2 ψ0

=
2V0

1 + b2/b2
90

. (3.53b)

∆V∥ always points in the direction opposite to V0. By equation (3.45) we
obtain the components of ∆vM as

|∆vM⊥| =
2mV0

M + m

b/b90

1 + b2/b2
90

, (3.54a)

|∆vM∥| =
2mV0

M + m

1

1 + b2/b2
90

. (3.54b)

∆vM∥ always points in the direction opposite to V0. Notice that in the limit
of large impact parameter b, |∆vM⊥| = 2Gm/(bV0), which agrees with the
determination of the same quantity in equation (1.30).

3.1.1 Constants and integrals of the motion

Any stellar orbit traces a path in the six-dimensional space for which the co-
ordinates are the position and velocity x,v. This space is called phase
space.1 A constant of motion in a given force field is any function

1 In statistical mechanics phase space usually refers to position-momentum space
rather than position-velocity space. Since all bodies have the same acceleration in a given
gravitational field, mass is irrelevant, and position-velocity space is more convenient.
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C(x,v; t) of the phase-space coordinates and time that is constant along
stellar orbits; that is, if the position and velocity along an orbit are given by
x(t) and v(t) = dx/dt,

C[x(t1),v(t1); t1] = C[x(t2),v(t2); t2] (3.55)

for any t1 and t2.
An integral of motion I(x,v) is any function of the phase-space co-

ordinates alone that is constant along an orbit:

I[x(t1),v(t1)] = I[x(t2),v(t2)]. (3.56)

While every integral is a constant of the motion, the converse is not
true. For example, on a circular orbit in a spherical potential the azimuthal
coordinate ψ satisfies ψ = Ωt + ψ0, where Ω is the star’s constant angular
speed and ψ0 is its azimuth at t = 0. Hence C(ψ, t) ≡ t− ψ/Ω is a constant
of the motion, but it is not an integral because it depends on time as well as
the phase-space coordinates.

Any orbit in any force field always has six independent constants of mo-
tion. Indeed, since the initial phase-space coordinates (x0,v0) ≡ [x(0),v(0)]
can always be determined from [x(t),v(t)] by integrating the equations of
motion backward, (x0,v0) can be regarded as six constants of motion.

By contrast, orbits can have from zero to five integrals of motion. In
certain important cases, a few of these integrals can be written down easily:
in any static potential Φ(x), the Hamiltonian H(x,v) = 1

2v2 + Φ is an
integral of motion. If a potential Φ(R, z, t) is axisymmetric about the z
axis, the z-component of the angular momentum is an integral, and in a
spherical potential Φ(r, t) the three components of the angular-momentum
vector L = x × v constitute three integrals of motion. However, we shall
find in §3.2 that even when integrals exist, analytic expressions for them are
often not available.

These concepts and their significance for the geometry of orbits in phase
space are nicely illustrated by the example of motion in a spherically sym-
metric potential. In this case the Hamiltonian H and the three components
of the angular momentum per unit mass L = x×v constitute four integrals.
However, we shall find it more convenient to use |L| and the two independent
components of the unit vector n̂ = L/|L| as integrals in place of L. We have
seen that n̂ defines the orbital plane within which the position vector r and
the velocity vector v must lie. Hence we conclude that the two independent
components of n̂ restrict the star’s phase point to a four-dimensional region
of phase space. Furthermore, the equations H(x,v) = E and |L(x,v)| = L,
where L is a constant, restrict the phase point to that two-dimensional sur-
face in this four-dimensional region on which vr = ±

√
2[E − Φ(r)] − L2/r2

and vψ = L/r. In §3.5.1 we shall see that this surface is a torus and that the
sign ambiguity in vr is analogous to the sign ambiguity in the z-coordinate
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of a point on the sphere r2 = 1 when one specifies the point through its x
and y coordinates. Thus, given E, L, and n̂, the star’s position and velocity
(up to its sign) can be specified by two quantities, for example r and ψ.

Is there a fifth integral of motion in a spherical potential? To study this
question, we examine motion in the potential

Φ(r) = −GM

(
1

r
+

a

r2

)
. (3.57)

For this potential, equation (3.11b) becomes

d2u

dψ2
+

(
1 −

2GMa

L2

)
u =

GM

L2
, (3.58)

the general solution of which is

u = C cos

(
ψ − ψ0

K

)
+

GMK2

L2
, (3.59a)

where

K ≡
(

1 −
2GMa

L2

)−1/2

. (3.59b)

Hence

ψ0 = ψ − K Arccos

[
1

C

(
1

r
−

GMK2

L2

)]
, (3.60)

where t = Arccosx is the multiple-valued solution of x = cos t, and C can
be expressed in terms of E and L by

E = 1
2

C2L2

K2
− 1

2

(
GMK

L

)2

. (3.61)

If in equations (3.59b), (3.60) and (3.61) we replace E by H(x,v) and L by
|L(x,v)| = |x × v|, the quantity ψ0 becomes a function of the phase-space
coordinates which is constant as the particle moves along its orbit. Hence ψ0

is a fifth integral of motion. (Since the function Arccosx is multiple-valued,
a judicious choice of solution is necessary to avoid discontinuous jumps in
ψ0.) Now suppose that we know the numerical values of E, L, ψ0, and the
radial coordinate r. Since we have four numbers—three integrals and one
coordinate—it is natural to ask how we might use these numbers to determine
the azimuthal coordinate ψ. We rewrite equation (3.60) in the form

ψ = ψ0 ± K cos−1

[
1

C

(
1

r
−

GMK2

L2

)]
+ 2nKπ, (3.62)
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where cos−1(x) is defined to be the value of Arccos (x) that lies between 0
and π, and n is an arbitrary integer. If K is irrational—as nearly all real
numbers are—then by a suitable choice of the integer n, we can make ψ
modulo 2π approximate any given number as closely as we please. Thus
for any values of E and L, and any value of r between the pericenter and
apocenter for the given E and L, an orbit that is known to have a given
value of the integral ψ0 can have an azimuthal angle as close as we please to
any number between 0 and 2π.

On the other hand, if K is rational these problems do not arise. The
simplest and most important case is that of the Kepler potential, when a = 0
and K = 1. Equation (3.62) now becomes

ψ = ψ0 ± cos−1

[
1

C

(
1

r
−

GM

L2

)]
+ 2nπ, (3.63)

which yields only two values of ψ modulo 2π for given E, L and r.
These arguments can be restated geometrically. The phase space has

six dimensions. The equation H(x,v) = E confines the orbit to a five-
dimensional subspace. The vector equation L(x,v) = constant adds three
further constraints, thereby restricting the orbit to a two-dimensional surface.
Through the equation ψ0(x,v) = constant the fifth integral confines the orbit
to a one-dimensional curve on this surface. Figure 3.1 can be regarded as
a projection of this curve. In the Kepler case K = 1, the curve closes on
itself, and hence does not cover the two-dimensional surface H = constant ,
L = constant . But when K is irrational, the curve is endless and densely
covers the surface of constant H and L.

We can make an even stronger statement. Consider any volume of phase
space, of any shape or size. Then if K is irrational, the fraction of the time
that an orbit with given values of H and L spends in that volume does not
depend on the value that ψ0 takes on this orbit.

Integrals like ψ0 for irrational K that do not affect the phase-space dis-
tribution of an orbit, are called non-isolating integrals. All other integrals
are called isolating integrals. The examples of isolating integrals that we
have encountered so far, namely, H , L, and the function ψ0 when K = 1,
all confine stars to a five-dimensional region in phase space. However, there
can also be isolating integrals that restrict the orbit to a six-dimensional
subspace of phase space—see §3.7.3. Isolating integrals are of great practical
and theoretical importance, whereas non-isolating integrals are of essentially
no value for galactic dynamics.


