
4
Equilibria of Collisionless Systems

In §1.2 we introduced the idea that stellar systems may be considered to be
collisionless: we obtain a good approximation to the orbit of any star by
calculating the orbit that it would have if the system’s mass were smoothly
distributed in space rather than concentrated into nearly point-like stars.
Eventually, the true orbit deviates significantly from this model orbit, but
in systems with more than a few thousand stars, the deviation is small for a
time ∼< trelax that is much larger than the crossing time tcross. In fact, for a
galaxy trelax is usually much larger even than the age of the universe, so the
approximation that the potential is smooth provides a complete description
of the dynamics.

In this chapter we consider model stellar systems that would be perfect
equilibria if trelax were arbitrarily large. Such models are the primary tool for
comparisons of observations and theory of galaxy dynamics. In Chapter 7
we shall see that they are also applicable to globular clusters, even though
trelax is significantly smaller than the cluster’s age, so long as it is recognized
that the equilibrium evolves slowly, on a timescale of order trelax.

We assume throughout that the stellar systems we examine consist of
N identical point masses, which might be stars or dark-matter particles.
Although unrealistic, this assumption greatly facilitates our work and has
no impact on the validity of our results.

In §4.1 we derive the equation that allows us to find equilibria, and dis-
cuss its connection to observational data. In §4.2 we show that solutions of
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the equation can be readily found if integrals of motion in the galactic po-
tential are known, and in §§4.3 to 4.5 we use such solutions to study models
with a variety of symmetries. In §4.6 we show that it is advantageous to
express solutions in terms of action integrals. Unfortunately, in many prac-
tical cases insufficient integrals are known to obtain relevant solutions, so in
§§4.7 and 4.8 we discuss alternative strategies, starting with heavily numer-
ical approaches and moving on to approximate techniques that are based on
moments of the fundamental equation. In §4.9 we draw on techniques devel-
oped throughout the chapter to hunt for massive black holes and dark halos
in galaxies using observations of the kinematics of their stars. In §4.10 we
address the question “what determines the distribution of stars in a galaxy?”
This is a difficult question to which we shall have to return in Chapter 9.

4.1 The collisionless Boltzmann equation

When modeling a collisionless system such as an elliptical galaxy, it is neither
practical nor worthwhile to follow the orbits of each of the galaxy’s billions
of stars. Most testable predictions depend on the probability of finding a
star in the six-dimensional phase-space volume d3xd3v around the position
x and velocity v. Therefore we define the distribution function (or df

for short) f such that f(x,v, t) d3xd3v is the probability that at time t a
randomly chosen star, say star 1, has phase-space coordinates in the given
range. Since by assumption all stars are identical, this probability is the
same for stars 2, 3, . . . , N . By virtue of its definition f is normalized such
that ∫

d3xd3v f(x,v, t) = 1, (4.1)

where the integral is over all phase space.
Let w = (x,v) be the usual Cartesian coordinates, and consider an

arbitrary region V of phase space. The probability of finding star 1 in V
is P =

∫
V d6w f(w). Let W represent some arbitrary set of phase-space

coordinates, and let F (W) be the corresponding df; that is the probability
of finding star 1 in V is P =

∫
V d6W F (W). If V is small enough, f and F

will be approximately constant throughout it, and we can take them outside
the integrals for P . Thus

P = f(w)

∫

V
d6w = F (W)

∫

V
d6W. (4.2)

If the coordinates W are canonical, equation (D.81) implies that
∫
V d6w =∫

V d6W. Substituting this relation into (4.2), we conclude that F (W) =
f(w). Therefore, the df has the same numerical value at a given phase-
space point in any canonical coordinate system. This invariance enables us
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henceforth to treat w = (q,p) as an arbitrary system of canonical coordi-
nates.

Any given star moves through phase space, so the probability of finding
it at any given phase-space location evolves with time. We now derive the
differential equation that is satisfied by f as a consequence of this evolution.
As f evolves, probability must be conserved, in the same way that mass is
conserved in a fluid flow. The conservation of fluid mass is described by the
continuity equation (F.3)

∂ρ

∂t
+

∂

∂x
· (ρẋ) = 0, (4.3)

where ρ and ẋ = v are the density and velocity of the fluid. The analogous
equation for the conservation of probability in phase space is

∂f

∂t
+

∂

∂w
· (fẇ) = 0. (4.4)

We now use Hamilton’s equations (D.54) to eliminate ẇ = (q̇, ṗ). The
second term in equation (4.4) becomes

∂

∂q
· (f q̇) +

∂

∂p
· (f ṗ) =

∂

∂q
·
(
f
∂H

∂p

)
−

∂

∂p
·
(
f
∂H

∂q

)

=
∂f

∂q
·
∂H

∂p
−
∂f

∂p
·
∂H

∂q

= q̇ ·
∂f

∂q
+ ṗ ·

∂f

∂p
,

(4.5)

where we have used the fact that ∂2H/∂q∂p = ∂2H/∂p∂q. Substituting this
result into equation (4.4) we obtain the collisionless Boltzmann equa-
tion1

∂f

∂t
+ q̇ ·

∂f

∂q
+ ṗ ·

∂f

∂p
= 0, (4.6)

which is a partial differential equation for f as a function of six phase-space
coordinates and time.

Equation (4.6) can be rewritten in a number of forms, each of which is
useful in different contexts. Equation (4.5) enables us to write

0 =
∂f

∂t
+
∂f

∂q
·
∂H

∂p
−
∂f

∂p
·
∂H

∂q

=
∂f

∂t
+ [f, H ],

(4.7)

1 Often also called the Vlasov equation, although it is a simplified version of an equa-
tion derived by L. Boltzmann in 1872. See Hénon (1982).
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where the square bracket is a Poisson bracket (eq. D.65).
An alternative form of the collisionless Boltzmann equation can be de-

rived by extending to six dimensions the concept of the convective or La-
grangian derivative (see eq. F.8). We define

df

dt
≡
∂f

∂t
+ ẇ ·

∂f

∂w
; (4.8)

df/dt represents the rate of change of the local probability density as seen
by an observer who moves through phase space with a star. Comparison of
equations (4.6) and (4.7) shows that ẇ · (∂f/∂w) = [f, H ], so the convective
derivative can also be written

df

dt
=
∂f

∂t
+ [f, H ], (4.9)

and the collisionless Boltzmann equation (4.6) is simply

df

dt
= 0. (4.10)

In words, the flow through phase space of the probability fluid is incompress-
ible; the phase-space density f of the fluid around a given star always remains
the same.2 In contrast to flows of incompressible fluids such as water, the
density will generally vary greatly from point to point in phase space; the
density is constant as one follows the flow around a particular star but the
density around different stars can be quite different.

In terms of inertial Cartesian coordinates, in which H = 1
2v2 + Φ(x, t)

with Φ the gravitational potential, the collisionless Boltzmann equation
reads

∂f

∂t
+ v ·

∂f

∂x
−
∂Φ

∂x
·
∂f

∂v
= 0. (4.11)

In cylindrical coordinates we have (eq. 3.66) H = 1
2 (p2

R + p2
φ/R2 + p2

z) + Φ
so with (4.7) the collisionless Boltzmann equation becomes3

∂f

∂t
+ pR

∂f

∂R
+

pφ
R2

∂f

∂φ
+ pz

∂f

∂z
−
(
∂Φ

∂R
−

p2
φ

R3

)
∂f

∂pR

−
∂Φ

∂φ

∂f

∂pφ
−
∂Φ

∂z

∂f

∂pz
= 0.

(4.12)

2 A simple example of an incompressible flow in phase space is provided by an idealized
marathon race in which all runners travel at constant speeds: at the start of the course,
the spatial density of runners is large but they travel at a wide variety of speeds; at the
finish, the density is low, but at any given time all runners passing the finish line have
nearly the same speed.

3 A reader unconvinced of the usefulness of the Hamiltonian formalism should try
deriving either (4.12) or (4.14) directly from (4.11).
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To obtain the Hamiltonian for motion in spherical polar coordinates we
replace in (3.218) ∂S/∂r by pr, ∂S/∂θ by pθ and ∂S/∂φ by pφ and find

H = 1
2

(
p2

r +
p2
θ

r2
+

p2
φ

r2 sin2 θ

)
+ Φ. (4.13)

Using this expression in (4.7) we find

∂f

∂t
+ pr

∂f

∂r
+

pθ
r2

∂f

∂θ
+

pφ
r2 sin2 θ

∂f

∂φ
−
(∂Φ

∂r
−

p2
θ

r3
−

p2
φ

r3 sin2 θ

) ∂f

∂pr

−
(∂Φ

∂θ
−

p2
φ cos θ

r2 sin3 θ

) ∂f

∂pθ
−
∂Φ

∂φ

∂f

∂pφ
= 0.

(4.14)

Conversion to rotating coordinates is discussed in Problem 4.1.

4.1.1 Limitations of the collisionless Boltzmann equation

(a) Finite stellar lifetimes The physical basis of the collisionless Boltz-
mann equation is conservation of the objects that are described by the df.
Stars are not really conserved because they are born and die, so their flow
through phase space would be more accurately described by an equation of
the type

df

dt
=
∂f

∂t
+ v ·

∂f

∂x
−
∂Φ

∂x
·
∂f

∂v
= B − D, (4.15)

where B(x,v, t) and D(x,v, t) are the rates per unit phase-space volume at
which stars are born and die. In the collisionless Boltzmann equation, B−D
is set to zero. This is a useful approximation to the truth if and only if B−D
is smaller in magnitude than terms on the left of equation (4.15). The term
v · ∂f/∂x is of order vf/R, where v and R are the characteristic speed and
radius in the galaxy. The ratio R/v is simply the crossing time tcross (§1.2).
Similarly, ∂Φ/∂x is of order the characteristic acceleration a, so the term
(∂Φ/∂x) · (∂f/∂v) is of order af/v. Since a ≈ v/tcross, the two last terms
in the middle section of equation (4.15) are of order f/tcross. Thus consider
the ratio

γ =

∣∣∣∣
B − D

f/tcross

∣∣∣∣ . (4.16)

The collisionless Boltzmann equation is valid if γ ≪ 1, which requires that
the fractional change in the number of stars per crossing time is small.

The significance of this criterion can be clarified by some concrete exam-
ples. We consider two contrasting stellar types: M dwarfs, which have masses

∼< 0.5M⊙ and live longer than the age of the universe; and O stars, which
have masses ∼> 20M⊙ and lifetimes ∼< 10 Myr (BM Tables 3.13 and 5.3).
In an elliptical galaxy the rate of formation of M dwarfs is negligible, and
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even the oldest M dwarfs have not had time to evolve significantly. Hence,
the collisionless Boltzmann equation will apply accurately to the df of M
dwarfs (γ ≤ 0.01). Now consider the contrasting case of O stars in the Milky
Way. These stars have lifetimes significantly shorter than a crossing time
∼ 100 Myr. In fact, an O star will scarcely move from its birthplace before it
dies, and the phase-space distribution of such stars will depend entirely on
the processes that govern star formation, and not at all on the collisionless
Boltzmann equation (γ ≃ 10). In between these extremes, the collisionless
Boltzmann equation will apply quite accurately to main-sequence popula-
tions in the Milky Way less massive than ∼ 1.5M⊙, since these stars live
for ∼> 1 Gyr, which will generally be some tens of crossing times. In certain
circumstances the collisionless Boltzmann equation may even be applied to
a population of short-lived objects, for example planetary nebulae in an el-
liptical galaxy, because the phase-space distributions of the objects’ births
and deaths are to a good approximation identical, so B − D ≃ 0.

(b) Correlations between stars The average number density of stars
in an infinitesimal volume of phase space is Nf . However, in practice all we
can hope to measure is the number density in some volume of phase space
large enough to contain many stars. The natural assumption to make is that
the density in such a volume is simply Nf , where f is the average of f within
this volume.4 However, this assumption will only be correct if the positions
of stars in phase space are uncorrelated: that is, knowing that star 1 is at
w makes it neither more nor less likely that another star, say star 2, is at
an adjacent phase-space location w′. Mathematically, we assume that the
probability of finding star 1 in the volume d6w at w and star 2 in d6w′ at w′

is simply the product f(w)d6w f(w′)d6w′ of the probabilities of finding star
1 at w and star 2 at w′—in §7.2.4 we shall call such distributions “separable”.
When the assumption of separability holds, the probability PV(k) that we
will find k stars in a given volume V of phase space is given by the Poisson
distribution (Appendix B.8)

PV(k) =
µk

k!
e−µ where µ ≡ NfV . (4.17)

It is easy to show that the mean number of stars predicted by this probability
distribution is ⟨k⟩ = NfV . Thus Nf is indeed the expectation value of the
stellar number density, if the df is separable. Two obvious corollaries are
that the mean mass within V is

⟨m⟩ = Mf(w)V , (4.18)

where M is the total mass of the stellar system, and the mean luminosity
emitted within V is

⟨l⟩ = Lf(w)V , (4.19)

4 This function is sometimes called the coarse-grained df. The standard df is then
called the fine-grained df to eliminate any danger of confusion with f .



280 Chapter 4: Equilibria of Collisionless Systems

where L is the system’s luminosity.
In reality, the presence of star 1 at x always increases the probability

that star 2 will be found at some nearby position x′ because stars attract
one another. Hence, the assumption that the probability distribution of
individual stars is separable is never strictly valid. In Chapter 7 we shall
explore the effect of such correlations on the evolution of stellar systems.
However, in this chapter we assume that separability holds, as it very nearly
does for many stellar systems, because the force on a star from its neighbors
is very much smaller than the force from the rest of the system.

4.1.2 Relation between the df and observables

At any fixed position x, the integral

ν(x) ≡
∫

d3v f(x,v) (4.20)

gives the probability per unit volume of finding a particular star at x, re-
gardless of its velocity. Multiplying by the total number N of stars in the
population, we obtain the real-space number density of stars

n(x) ≡ Nν(x). (4.21)

In the Galaxy n(x) can in principle be determined from star counts, and thus
ν(x) can be derived from n(x). In other galaxies it is not usually possible to
count stars, but we can derive ν(x) from the luminosity density j(x) = Lν(x),
where L is the luminosity of the stellar population (BM §4.2.3).

It is often convenient to modify the definition of the df so that fd6w
represents not the probability of finding a given star in the phase-space vol-
ume d6w, but rather the expected number, total mass, or total luminosity
of the stars in d6w. These modifications correspond to multiplying f by N ,
M , or L, respectively. Ideally these different definitions would be reflected in
different notations for the df. In practice the definition is usually clear from
the context, and f is conventionally used to denote all of these quantities.

Dividing f by ν we obtain the probability distribution of stellar velocities
at x

Px(v) =
f(x,v)

ν(x)
, (4.22)

which can be directly measured near the Sun (BM §10.3). In external galaxies
Px can be probed through the line-of-sight velocity distribution (losvd;
BM §11.1), which gives for a particular line of sight through the galaxy the
fraction F (v∥)dv∥ of the stars that have line-of-sight velocity within dv∥ of
v∥. Almost all galaxies are sufficiently far away that all vectors from the
observer to a point x in the galaxy are very nearly parallel to the fixed unit
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vector ŝ from the observer to the center of the galaxy. Then x∥ ≡ ŝ · x and
v∥ ≡ ŝ · v are the components of x and v parallel to the line of sight. We
also define x⊥ ≡ x − x∥ŝ and v⊥ ≡ v − v∥ŝ to be the components of x and
v in the plane of the sky. The relation between Px(v) and F (x⊥, v∥) is

F (x⊥, v∥) =

∫
dx∥ ν(x)

∫
d2v⊥ Px(v∥ŝ + v⊥)∫
dx∥ ν(x)

=

∫
dx∥d

2v⊥ f(x,v)∫
dx∥d3v f(x,v)

.

(4.23)

The losvd is frequently quantified by two numbers, the mean line-of-
sight velocity v∥ and the dispersion σ∥ about this mean. We have

v∥(x⊥) ≡
∫

dv∥ v∥F (x⊥, v∥) =

∫
dx∥d

3v v∥f(x,v)∫
dx∥d3v f(x,v)

=

∫
dx∥ ν(x) ŝ · v∫

dx∥ ν(x)
,

(4.24a)

where we have defined the mean velocity at location x

v(x) ≡
∫

d3vvPx(v) =
1

ν(x)

∫
d3v vf(x,v). (4.24b)

The line-of-sight velocity dispersion is defined to be

σ2
∥(x⊥) ≡

∫
dv∥ (v∥ − v∥)

2F (x⊥, v∥)

=

∫
dx∥d

3v (ŝ · v − v∥)
2f(x,v)∫

dx∥d3v f(x,v)
.

(4.25)

The line-of-sight velocity dispersion is determined both by the varia-
tion in the mean velocity v∥(x) along the line of sight, and the spread in
stellar velocities at each point in the galaxy around v(x). This spread is
characterized by the velocity-dispersion tensor

σ2
ij(x) ≡

1

ν(x)

∫
d3v (vi − vi)(vj − vj)f(x,v)

= vivj − vivj .
(4.26)

The velocity-dispersion tensor is manifestly symmetric, so we know from
matrix algebra that at any point x we may choose a set of orthogonal axes
êi(x) in which σ2 is diagonal, that is, σ2

ij = σ2
iiδij (no summation over

i, and δij = 1 for i = j and zero otherwise). The ellipsoid that has the
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Figure 4.1 The full curves show the
velocity distributions Px(v) at the
center of a Plummer model (lower
curve) and at r = 2b (upper curve).
The dashed curves show the losvd

F (v∥) along two lines of sight, R =
0, 2b. The df of the Plummer model
is given by equation (4.91b).

diagonalizing coordinate axes êi(x) for its principal axes and σ11, σ22 and
σ33 for its semi-axis lengths is called the velocity ellipsoid at x.

To determine the relation between the velocity-dispersion tensor and the
line-of-sight velocity dispersion, we let u(x) ≡ ŝ · v(x) − v∥ be the difference
between the mean velocity parallel to the line of sight at x and the mean
velocity for the entire line of sight. Then we can rewrite (4.25) as follows:

σ2
∥(x⊥) =

∫
dx∥d

3v [ŝ · (v − v) + u]2f(x,v)∫
dx∥d3v f(x,v)

=

∫
dx∥ ν(x)

(
ŝ · σ2 · ŝ + u2

)
∫

dx∥ ν(x)
,

(4.27)

where we introduce the notation ŝ · σ2 · ŝ ≡
∑

ij ŝiσ2
ij ŝj .

These results show that once ν, v and σ2 are known at each point in
a model, the observable quantities v∥ and σ2

∥ can be determined for that

model. This fact makes ν, v and σ2
ij , all functions of x, vital links between

observations and theoretical models. Moreover, we shall see in §4.8 that in
equilibrium stellar systems there are simple relations between these quanti-
ties and the gravitational field (the Jeans equations).

Notice that while v∥ depends only on the mean velocity field v(x), there
are contributions to σ2

∥ from both σ2 and v. Moreover, both contributions

are inherently positive, so σ2
∥ is in general larger than the average of the

intrinsic squared velocity dispersion ŝ · σ2 · ŝ along the line of sight.
One shortcoming of v∥ and σ2

∥ as probes of the dynamics of a galaxy is
that they are hard to measure accurately because they are sensitive to the
contributions of the small number of high-velocity stars.

An example In §4.3.3a we shall encounter an exceptionally simple model
system called the Plummer model. This is a non-rotating spherical system
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in which the velocity distribution Px depends only on v ≡ |v|, and the grav-
itational potential is given by equation (2.44a). The full curves in Figure 4.1
show Px(v) at the center of the system and at r = 2b, where b is the Plummer
scale length. Notice that Px vanishes for speeds larger than the escape speed√

2|Φ(x)| (eq. 2.31). At small radii, where |Φ| is relatively large, a graph
of Px versus v is wide and gently peaked, while at large radii, where |Φ| is
much smaller, a plot of Px(v) shows a high, narrow peak.

The losvd F (v∥) along a line of sight through a Plummer model de-
pends on the projected distance R = |x⊥| between the line of sight and
the center of the model because it is a weighted mean of the velocity dis-
tributions Px(v) for different points along the line of sight (eq. 4.23). The
dashed curves in Figure 4.1 show the losvd for the line of sight through the
center, and one further out. Notice that the losvd at each radius is more
centrally peaked than the velocity distribution at that radius. There are two
reasons for this phenomenon. First, F (v∥) is depressed at large values of v∥
by the integral over v⊥ in (4.23) because the range of allowed values of v⊥
diminishes rapidly as v∥ approaches the escape speed. A subsidiary effect is
that the line of sight through the center samples points that are physically
far from the cluster center, where the velocity distribution Px is narrowly
peaked around v = 0.

4.2 Jeans theorems

In §3.1.1 we introduced the concept of an integral of motion in a given sta-
tionary potential Φ(x). According to equation (3.56), a function of the phase-
space coordinates I(x,v) is an integral if and only if

d

dt
I[x(t),v(t)] = 0 (4.28)

along any orbit. With the equations of motion this becomes

dI

dt
=
∂I

∂x
·
dx

dt
+
∂I

∂v
·
dv

dt
= 0, or v ·

∂I

∂x
−
∂Φ

∂x
·
∂I

∂v
= 0. (4.29)

Comparing this with equation (4.11), we see that the condition for I to be
an integral is identical with the condition for I to be a steady-state solution
of the collisionless Boltzmann equation. This leads to the following theorem,
first stated by Jeans (1915).

Jeans theorem Any steady-state solution of the collisionless Boltzmann
equation depends on the phase-space coordinates only through integrals of
motion in the given potential, and any function of the integrals yields a
steady-state solution of the collisionless Boltzmann equation.


