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where x approaches zero along the positive imaginary axis. Using equations
(C.31) and (C.13) to evaluate the limit in equation (2.203), we then find
(Hunter 1963)
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A general disk potential, which is a sum over l and m of potentials
of the form (2.202), is generated by the surface density Σ(v,φ) that is
the sum of surface densities Σlm(v,φ). According to equation (2.204a),
−2Vlm/(π2G∆glm) is the coefficient of Ym

l (v,φ) when | cos v|Σ(v,φ) is ex-
panded in spherical harmonics. Thus with the orthogonality relation (C.44)
we have
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The integrand in equation (2.205) is symmetrical about v = π/2 when l−m
is even, so we may restrict the v integration to the range (0,π/2) and double
the result. Hence
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All the techniques in this section are special cases of a general method
for finding disk potential-density pairs that is described by Qian (1992).

2.7 The potential of our Galaxy

In this section we investigate the gravitational field of our own galaxy, the
Milky Way. The Galaxy is made of several components, the disk, the bulge,
the stellar halo, and the dark halo. The mix of stars, gas and dark matter
that makes up a galaxy such as our own varies from component to component
and is even likely to depend on location within each component.

Ideally, we should rely solely on dynamical tracers, such as the velocity
fields of gas and stars and observations of gravitational lensing, to map out
the distribution of mass in the Galaxy. Sadly, at the present time such a
project is unfeasible.

Since we are not yet in a position to model the Galactic density and
gravitational field in a purely dynamical way, we flesh out the available dy-
namical constraints with photometric information. In particular, we simply
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assume that each component has a mass-to-light ratio Υ that is independent
of position. For the reason given above, this procedure is arbitrary and un-
satisfactory, but it yields concrete Galactic potentials, which make testable
predictions regarding the kinematics of stars and gas. Proceeding in this
spirit, we now investigate models of our Galaxy, following Dehnen & Binney
(1998a) and BM §10.6.

The brightness distribution of each component is assumed to be similar
to those of external galaxies (BM §§4.3 and 4.4), while the size and total lu-
minosity of each component is determined from photometry and star counts,
or by fitting to the available dynamical constraints. We do not model the
stellar halo here since its contribution to the potential is negligible.

The models are constrained by fitting to the following data (cf. Ta-
ble 1.2):
(i) The circular-speed curve vc(R) for an assumed value of the solar circular

speed, v0 ≡ vc(R0). Since this curve is determined from the line-of-sight
velocities of tracers such as HI clouds and Cepheid stars, the circular-
speed curve depends on v0, which must be determined by other methods.

(ii) The values of the Oort constants (Table 1.2, eq. 3.83, and BM §10.3.3).
(iii) The total surface density within 1.1 kpc of the Galactic plane near the

Sun, Σ1.1(R0), and the contribution of the disk to this density (Ta-
ble 1.1).

(iv) The velocity dispersion of bulge stars in Baade’s window, a line of sight
that passes ∼ 500 pc from the Galactic center in which absorption by
intervening dust is unusually low. We take this dispersion to be 117 ±
15 km s−1.

(v) The total mass within 100 kpc of the Galactic center (eq. 1.12).
(vi) The solar radius R0 = 8 kpc.

The functional forms assumed for each of the Galaxy’s components are as
follows.

(a) The bulge The density of this component is assumed to be

ρb(R, z) = ρb0

(m
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)−αb

e−m2/r2
b , (2.207a)

where
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√
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For qb < 1 this is an oblate, spheroidal power-law model that is truncated
at an outer radius rb. Its potential is conveniently calculated from equations
(2.125) with
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Near-infrared photometry (BM §10.2.1) suggests values for three of the pa-
rameters, αb = 1.8, qb = 0.6, rb = 1.9 kpc, and without loss of generality,
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we can set ab = 1 kpc. The parameter ρb0, and hence the mass of the bulge,
are determined by fitting the dynamical constraints.

(b) The dark halo By extending the spherical two-power-law models of
§2.2.2f to oblate models, the density of this component is taken to have the
form

ρh(R, z) = ρh0

(m

ah

)−αh
(
1 +

m

ah

)αh−βh

, (2.209)

where m is again given by equation (2.207b) with qb replaced by qh. The
potential of this component, in which the density varies as r−αh for r ≪ ah

and r−βh at large r, can also be obtained from equation (2.125). Clearly,
photometry provides no guidance as to the values of any of the parameters
in equation (2.209); all five parameters ρh0, ah, αh, βh, and qh can only be
determined by fitting the dynamical constraints. The data we use have little
sensitivity to qh, and we arbitrarily set it to 0.8.

(c) The stellar disk The density of the stellar disk is assumed to fall off
exponentially with radius R, as in equation (1.7), and to depend on distance
from the midplane z through the sum of two exponentials, representing the
thin and thick disks described on page 13—this dependence on z is motivated
by observations such as those of Gilmore & Reid (1983), shown in BM Figure
10.25. Mathematically,

ρd(R, z) = Σde−R/Rd
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)
, (2.210)

where α0 + α1 = 1, Σd is the central surface density, Rd is the disk scale
length, and z0 = 0.3 kpc and z1 = 1 kpc are scale heights for the thin and
thick components. The potential generated by this density distribution is
given by equation (2.170) with ζ(z) replaced by the expression in large brack-
ets in equation (2.210).

(d) The interstellar medium The disk formed by a galaxy’s interstellar
medium (ism) is thinner and more extended radially than the galaxy’s stellar
disk (see, for example, BM Figures 8.25 and 9.19). In the case of the Milky
Way there is a hole of radius ∼ 4 kpc at the center of the disk of the ism

(BM Figure 9.19). These observations are crudely represented by taking the
density of the ism to be
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with Rm = 4 kpc and zg = 80 pc. The parameters Σg and Rg are related
to the parameters Σd and Rd of equation (2.210) by the assumption that
Rg = 2Rd and that the ism contributes 25% of the total disk surface density
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Table 2.3 Parameters of Galaxy models

Parameter Model I Model II

Rd/kpc 2 3.2
(Σd + Σg)/M⊙ pc−2 1905 536
ρb0/M⊙ pc−3 0.427 0.3
ρh0/M⊙ pc−3 0.711 0.266
αh −2 1.63
βh 2.96 2.17
ah/kpc 3.83 1.90
Md/1010 M⊙ 5.13 4.16
Mb/1010 M⊙ 0.518 0.364
Mh,<10kpc/1010 M⊙ 2.81 5.23
Mh,<100kpc/1010 M⊙ 60.0 55.9
ve(R0)/km s−1 520 494
fb 0.05 0.04
fd 0.60 0.33
fh 0.35 0.63

notes: In both models 0.75Σ(R0) is contributed by stars, of which 0.05Σ(R0)
is in the thick disk. Interstellar gas accounts for the remaining 0.25Σ(R0). The
thin and thick disks have the same scale length Rd, while the gas disk has scale
length 2Rd and a central hole of radius Rm = 4kpc. The thicknesses of the disks
are z0 = 300 pc, z1 = 1kpc, zg = 80 pc. In both models the bulge parameters are
ab = 1kpc, αb = 1.8, rb = 1.9 kpc, qb = 0.6, while the halo axis ratio qh = 0.8.
The quantity ve(R0) is the escape speed from the solar neighborhood; fb, fd

and fh are the fractions of the radial force supplied by bulge, disk and halo at
R0 = 8kpc. These are slightly modified forms of Models 1 and 4 of Dehnen &
Binney (1998a).

at the solar radius, R0. The potential implied by equation (2.211) is best
found from equation (2.154).

Dehnen & Binney (1998a) found that fits to the constraints described
above could be obtained for a wide range of models made up of the compo-
nents (a) to (d). The most important single parameter for determining the
properties of a model is the scale length of the stellar disk, Rd. In §1.1.2 we
estimated that Rd lies between 2 and 3 kpc. When Rd is at the lower end
of this range, the disk dominates the gravitational field out to beyond the
solar radius, whereas when Rd = 3 kpc, the halo dominates at all radii. It
is useful to examine the properties of two extreme models, namely the most
and the least halo-dominated models; we designate them Models I and II
and list their parameters in Table 2.3.

Model I has a small scale length, Rd = 2 kpc, and gives rise to the iso-
potential surfaces and circular-speed curves shown in Figures 2.19 and 2.20.
At small radii the halo density is ρh ∝ r−αh = r2, which is the smallest value
of αh allowed by the fitting program—with this disk scale length, the best fit
has the smallest possible halo contribution near the center. Figure 2.20 illus-
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Figure 2.19 The lower right panel shows equipotential contours of a model of the Galaxy
with Rd = 2kpc (Model I). Contour levels are (−0.5,−1, −1.5 . . .) × (100 km s−1)2. The
top left panel shows the potential of the bulge, while the potentials of halo and disk are
shown at top right and lower left, respectively. From top left to lower right the potentials
at (R, z) = (8 kpc, 0) are −0.28, −10.2, −2.98, −13.46 × (100 kms−1)2.

Figure 2.20 The full curve shows
the circular-speed curve of Model I,
whose potential is contoured in Fig-
ure 2.19. The contributions from the
bulge, halo and disk are shown by
the long-dashed, dotted and short-
dashed curves, respectively. Notice
that the total circular speed is given
by the sum in quadrature of the cir-
cular speeds of the components.

trates the dynamical importance of the disk and bulge interior to the solar
radius, showing that at such radii the halo makes only a small contribution
to the overall circular speed—since v2

c ∝ g, the contribution to the gravita-
tional force is even smaller. This dominance is reflected in the contour plots
of Figure 2.19 by the much closer packing of the equipotential contours of
the bulge (top left panel) and disk (lower left panel) than those of the halo
(top right panel). The equipotential surfaces of the disk are naturally more
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Figure 2.21 Equipotential contours of the halo-dominated Galaxy model, Model II,
which has Rd = 3.2 kpc. The top left panel shows the potential of the bulge, while
the potentials of halo and disk are shown at top right and lower left, respectively. The
lower right panel shows the overall potential with contour levels (−0.5,−1, −1.5 . . .) ×
(100 km s−1)2. From top left to lower right the potentials at (R, z) = (8 kpc, 0) are
−0.20, −9.83, −2.19, −12.21 × (100 km s−1)2.

highly flattened than those of either the bulge or the halo, so the equipo-
tential surfaces of the total potential are most flattened at radii r ∼ 5 kpc,
where the disk’s potential dominates.

Although in Model I the disk dominates the gravitational field (potential
gradient) at R0, the halo makes by far the largest contribution to the total
potential at all radii. For example, at the Sun’s location the halo contributes
−10.2 × (100 km s−1)2 to the overall potential, while the disk and bulge to-
gether contribute only −3.26 × (100 km s−1)2. The large contribution from
the halo reflects the its enormous mass, most of it beyond R0. Just how
much mass the halo contains is ill-determined because the Galaxy’s circular
speed vc(R) is uncertain beyond ≈ 2R0.

Figures 2.21 and 2.22 analyze the potential of Model II, a model that has
a larger disk scale length, Rd = 3.2 kpc. As Figure 2.22 shows, in this model
the halo dominates the circular speed at all radii. It does so because it is much
more centrally concentrated than the halo of Model I: at small r its density
rises towards the center as r−1.63 rather than falling as in Model I. At the
solar position the escape speed in this model is ve(R0) = 494 km s−1, which is
observationally indistinguishable from ve(R0) = 520 km s−1 in Model I; both
are consistent with the observational estimate ve(R0) = (550± 50) km s−1 in
Table 1.2.
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Figure 2.22 The full curve shows
the circular-speed curve of Model II.
The contributions from the bulge,
halo and disk are shown by the long-
dashed, dotted and short-dashed
curves, respectively.

Figure 2.23 In each panel the full curve shows as a function of z in a Galactic model the
force towards the galactic plane, Kz = ∂Φ/∂z at R0 = 8kpc. The contributions from the
bulge plus halo and disk are shown by the dotted and dashed curves, respectively. The
left panel is for disk-dominated model, Model I (Figures 2.19 and 2.20), while the right
panel is for Model II (Figures 2.21 and 2.22).

One of the striking conclusions from these models is that the relative
contributions of the disk and the halo to the interior mass and the circular
speed at R0 are very uncertain. As Rd varies from 3.2 kpc to 2 kpc, the
mass of the dark halo inside 10 kpc decreases by nearly a factor 2 and the
fraction of the gravitational force at R0 contributed by the halo falls9 from
0.63 to 0.35. Similar uncertainties are encountered in models of external
disk galaxies (van Albada et al. 1985; Sellwood 1999). This degeneracy
between the disk and halo parameters has to be resolved by bringing other
observational constraints or dynamical arguments to bear, such as those
obtained from measurements of the dynamics of galactic bars (§6.5.2e), and

9 Models in which most of the force at ∼ 2Rd comes from the disk are called
“maximum-disk models”—see §6.3.3.
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Figure 2.24 Schematic diagram of the Galactic
bar.

the optical depth to gravitational microlensing towards the Galactic center
(Bissantz & Gerhard 2002; Famaey & Binney 2005).

Even though the halo of Model II dominates the circular speed at R0,
Figure 2.23 shows that the vertical force towards the disk, Kz = ∂Φ/∂z, is
dominated by the disk within ∼ 2 kpc of the plane. Even a relatively low-
mass disk can dominate Kz in this way because a disk’s contribution to Kz

rises extremely quickly near the plane, where the density of disk material is
high. Above one scale height, ∼ 200 pc, the disk’s contribution to Kz flattens
off to the nearly constant value 2πGΣ(R) (cf. Problem 2.3). By contrast,
in both panels of Figure 2.23 the halo’s contribution to Kz (dotted curves)
rises nearly linearly with z out to several kiloparsecs above the Sun. Notice
how similar the full curves in Figure 2.23 are: despite the very different
contributions to vc from disk and halo in the two models, the shape of the
observationally measurable quantity Kz (§4.9.3) is almost the same in the
two cases.

(e) The bulge as a bar There is both kinematic and photometric evi-
dence that the Milky Way’s bulge is in fact a bar, that is, a highly elongated,
rapidly rotating stellar system (§6.5 and BM §§9.4 and 10.1). From the van-
tage point of the Sun, it is hard to determine the precise shape of the bar,
but, as sketched in Figure 2.24, the bar is believed to extend to a Galacto-
centric radius ∼ 3 kpc, with its longest axis inclined by about 20◦ to the line
from the Sun to the Galactic center (Bissantz & Gerhard 2002). The lengths
of the bar’s semi-axes are roughly in the ratios 1 : 0.3 : 0.3.

Both photometric studies of the bar itself and comparisons with bars in
other galaxies suggest that the isodensity surfaces deviate significantly from
ellipsoids (López–Corredoira et al. 2005). Nonetheless, when considering the
impact that the bar has on the Galaxy’s gravitational potential, it is useful to
start by approximating the isodensity surfaces by ellipsoids for in this case we
can obtain the potential from equation (2.140)—if a more exact result were
required, one could expand the difference ρ(x) − ρe(x) between the actual
density distribution ρ and the elliptical model ρe in spherical harmonics,
and obtain the small correction to the potential from equation (2.95). In
this spirit, we estimate the effect of the bar on the Galaxy’s potential by
fashioning a bar out of the axisymmetric bulge of Model I as follows.

In equations (2.207) we increase the scale radius rb from 1.9 kpc to 3 kpc,
and redefine m by m2 = x2 +(y2 + z2)/q2, where x runs along the bar’s long
axis. We adopt q = 0.35 and increase ρ0 so that the bar has roughly the
same mass as the original bulge. In Figure 2.25 the full curves show the
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Figure 2.25 Full curves show the intersection with the Galactic plane of the isopotential
surfaces of a model of the galactic bar. For comparison the dotted curves show the same
curves for the axisymmetric bulge of Model I.

intersection with the Galactic plane of the bar’s isopotential surfaces, while
the dotted curves show the corresponding curves for the bulge of Model I.
As expected, the bar’s isopotential surfaces are elongated. The effect is very
small near the solar circle but appreciable at R ∼< 5 kpc. On account of this
elongation, the potential now generates tangential forces: Along a radius
that makes an angle of 45◦ with the bar’s long axis, the ratio Fφ/Fr of the
tangential and radial forces from the bar falls from 0.4 at the center to 0.27 at
2 kpc and 0.125 at 4 kpc. From Figure 2.20 we see that the bulge dominates
Fr at R ∼< 1 kpc, so in this crude model tangential forces are very important
at small radii. Conversely, at R ≃ 4 kpc the bulge contributes only 11% of
Fr, so at that radius Fφ is only ∼ 1% of Fr. Nonetheless, the tangential
forces that the bar induces can be dynamically significant for resonant orbits
as far out as the solar circle because along such orbits the effect of Fφ can
accumulate over several periods (§3.7.2 and Dehnen 2000a).

We conclude that accurate models of the triaxial bar are needed to
understand the dynamics of the Milky Way at R ∼< 2–3 kpc, and possibly
beyond.

2.8 Potentials from functional expansions

A common theme of many of the methods we have described is the expan-
sion of the gravitational potential and density in a set of functions that are
potential-density pairs. We shall encounter such methods again in §2.9.4
as efficient tools for N-body simulation, and in §5.3.2, where we study lin-
ear response theory for stellar systems. In this section we re-examine these
techniques from a general standpoint.

The basic idea of §2.3 was to approximate a real galactic density dis-
tribution by a density for which the potential is known analytically. Only a


