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The expansion velocity of this shell, which can be measured from the line
profile, is thought to be a diagnostic of the age of the exciting star: initially
more massive and therefore shorter-lived stars give rise to larger expansion
velocities. When the radio-selected sample of Lindgvist, Habing & Winnberg
(1992) is divided into two according to whether the expansion velocity is
greater than or less than 18 km s, the velocity dispersions of the subsamples
are gy, = 82 + 7kms~! for the slowly expanding (old) stars and oy, =
6516 kms™! for the rapidly expanding (young) stars. The rapidly expanding
stars are significantly more strongly concentrated towards the plane than
are the slowly expanding stars. Both samples show evidence for Galactic
rotation. In fact, the mean values of (v)os X sign(l)) are very similar for this
sample and for the samples of IRAS-selected OH/IR stars studied by Nakada
et al. and te Lintel-Hekkert et al., even though the Lindqvist et al. sample
covers a much smaller range in |I| (]!|] < 1°) than do the IRAS-selected
surveys.

If the transverse velocities of bulge stars exceed 100 kms™?!, their proper
motions should be measurable: 120kms~? at a distance of Ry = 8 kpc yields
3.1masyr~!. Spaenhauer, Jones & Whitford (1992) have measured proper
motions for 429 stars in Baade’s Window. These stars were selected to have
B —V > 1.4, with the intention of including within the sample all K and
M giants in the field.” The proper motions measured by Spaenhauer et al.
are relative, that is, the mean proper motion of the sample is unknown. The
dispersions of y; and pp within the sample are (07,05) = (3.2+£0.1,2.8 £
0.1)masyr~!. The subsample formed by stars fainter than B = 18 has
only very slightly larger dispersions. Since any disk stars in the sample
should be relatively nearby and therefore mostly brighter than B = 18, this
result suggests that disk contamination is not a major problem. The rough
agreement between the line-of-sight and transverse velocity dispersions shows
that any velocity anisotropy within the bulge is minor. It does not follow that
the velocity ellipsoids (see below) within the bulge are isotropic, however,
because these ellipsoids will in most places not be aligned with the direction
to Baade’s Window and the [ and b directions. v

10.3 Kinematics of stars near the Sun

10.3.1 The solar motion

We now fill a gap in our knowledge which we papered over in Chapters 2
and 9: determining the velocity of the Sun relative to the LSR. Our strategy
for this project is the following. We identify a series of types of spectroscopi-
cally similar stars — gK stars, dM stars etc. — and then determine the velocity

7 The first epoch plates were exposed by W. Baade in 1950.
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of the Sun relative to the mean velocity of each type. Each such velocity is
called the solar motion relative to that type of stars. We shall find that
the solar motion varies systematically with the type studied, and that the
velocity of the LSR can be inferred from this systematic variation.

The solar motion can be determined from either radial velocities or
proper motions — see Jaschek & Valbousquet (1991) and Dehnen & Binney
(1998a) for recent determinations by each method. To see this, let v denote
the velocity of an object in the frame of rest of the given type; in this frame
the Sun has velocity v and the average of any component of velocity, v;,
over stars of the type is zero. Now the heliocentric velocity of the kth star is
U = Vi — Vg, 50, by equation (2.23), its radial velocity is

Ulosk = Xk - Vi — Vg €OS Y, (10.7)

where X is the unit vector from the Sun to the star and i is the angle
between this vector and vo. When equation (10.7) is averaged over a large
number of stars that are seen in almost-the same direction %X, we have that X, -
Vi approximately averages to zero because the mean of Vi is, by construction,
zero and X ~ X for all stars. Hence

(Vios) = —vg cos . (10.8)

This equation states that the mean radial velocity will be largest when %
points in the opposite direction to vg (1) = 180°), and smallest when %
and vg are parallel () = 0) - in this direction the Sun is on the average
approaching the stars, so they tend to have negative radial velocities. The
direction of v, is called the apex of the solar motion, and the opposite
direction is called the antapex of the solar motion.

Suppose now that we wish to determine Ve from proper motions. We
average equation (2.19) for a star’s proper motion over a large number of stars
of the type that are all seen near the direction of % and all lie approximately
at distance d, so that |x,| ~ d:

<“> — <((Vk - V(Dl))c:l JA(Ic) X f‘k>
L (e = vo)) x %) x
. d (10.9)
= —E(v@ X X) X X

1
= E(VG — vg cos P X).

From this equation we may deduce the physically obvious fact that the mean
proper motion of members of the type vanishes in the direction of either the
apex or the antapex of the solar motion (3 = 0,180°), and is largest in the
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Box 10.1: Determining v, by Least-Squares

It is not immediately obvious from equations (10.8) and (10.9) how vg
should be determined from a given body of data. We address this problem
for the case of radial velocities — a closely analogous procedure works for
proper motion data (Dehnen & Binney 1998a). We start by rewriting
(10.7) in the form

}A(k~Vk=)A{k-V@+Ulosk (kzl,...,N),

where we assume that N stars have been observed. These N equations
have infinitely many solutions, since if v; and vg solve them, so do
Vi, = Vx + ¥V and v + V; this change corresponds to a simple boost
in our reference frame. To pick out the solution of interest, we have to
impose the condition that the v; have zero mean. Suppose that this
condition is satisfied in the unprimed frame. Then it is easy to see that

N N N N
S= (- vi)? =D (ke ve)2+ Y (R 92> Y (ki - vi)?.
k k k k
It follows that the desired frame is that which minimizes S. Therefore
we determine v by minimizing S = EkN(fck V@ + Vios k)% With respect
to the three components of v. That is, we solve the three simultaneous
linear equations

as
0_

N
= =2 Xk -V Xk i ;1 =1,2,3
8”@1’ zk:(xk ® + Vlos k) ki (7, )

for the three components vg;.

Sun l_>,x ............................................................ - GC

Figure 10.9 Definition of a coordinate system centered on the
Sun. o

perpendicular directions (¢ = 90°). Moreover, if we further average equation
(10.9) over stars that lie in the same direction but at different distances d, it
remains true that (u) vanishes in the apex and antapex directions. Hence,
the direction of the solar motion can be deduced from proper motions even
if one does not know any stellar distances. To obtain the magnitude of v,
however, it is essential to have a distance estimate for each star in one’s
sample.

Box 10.1 and Problem 10.5 describe the mechanics of extracting the
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Figure 10.10 The three components of the solar motion as func-
tions of B — V. [After Dehnen & Binney (1998a)]

solar motion from a large sample of stellar velocities. Figure 10.9 defines
the coordinate system that is generally used in kinematic studies of the
solar neighborhood. The x direction points towards the Galactic center,
the direction of Galactic rotation is the y direction, and the z direction
points towards the NGP. It is conventional to use the letters U, V and W for
vz, vy and v, respectively. Figure 10.10 plots the U,V and W components
of the solar motion relative to MS stars for which the Hipparcos satellite has
determined accurate parallaxes. Different colors yield fairly similar values
of Uy and Vg, so we may estimate the radial and vertical components of
the solar motion with respect to the Galactic center by averaging individual
values of Ug and V in Figure 10.10. For reasons that will emerge below,
we exclude the bluest data-point from this average and find the radial and
vertical components of this motion to be

Us = vez = 10.0 £ 0.4kms™?,

. (10.10)
Wo =v5, =72+ 04kms™".

In Figure 10.10 it is striking that for B — V' < 0.61, Vj is increases
steadily with increasing B — V, while for B — V > 0.61, V;, is independent
of B—V. Figure 10.11 shows that these variations in Vi, are linearly related
to the squared random velocity S? for each stellar group — see Problem 10.5
for the definition of S2. In fact, theory predicts this dependence of V; on
S2% — see equation (4-35) of BT. The straight line in Figure 10.11 shows a
suitable linear fit to the data, with the data point for the bluest stars again
excluded from the fit. From the y intercept of this line we infer the value,
5.2+ 0.6kms™!, of V for a hypothetical stellar type that had S2 = 0. In
§9.1 we defined the local standard of rest (LSR) as the velocity of the closed
orbit within the plane that passes through the present location of the Sun.
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Figure 10.11 The V component of the solar motion relative to
different stellar types is a linear function of the random velocity §2
of each type. [After Dehnen & Binney (1998a)]

Since a class of stars that moved on such closed orbits would have S2 — 0, we
conclude that the solar motion relative to the LSR has Vo =5.240.6kms™!,
In summary, the Sun’s motion relative to the LSR is

Us =10.0+£0.4kms™?
5.2+ 0.6kms™?
Wo= 72+04kms™*

&
I

= |vg| = 13.4kms™ 1. 10.11
©

Thus, the Sun is moving in toward the Galactic center and up toward the
north Galactic pole and away from the plane. It is also moving around
the Galactic center faster than it would if it were on a circular orbit. It
follows that the Sun is currently inside its guiding-center radius R, and is
approaching, but has not yet quite reached, the pericenter of its orbit — see
equation (9.7) and §3.3.3 of BT for a discussion of orbits like the Sun’s.
From this point on we will whenever possible refer the velocities of stars
to the velocity of the LSR rather than that of the Sun. In particular, we
shall assume that the means (U) and (W) vanish for stars near the Sun,
The systematic trend of V;; with $2 shown in Figure 10.11 is a reflection
of a phenomenon called asymmetric drift, which is the tendency of the
mean rotation velocity of a stellar population to lag behind that of the LSR
more and more with increasing random motion within the population — see
§10.3.2 below and §4.2.1 of BT. When the Sun’s velocity is referred to such
a lagging reference frame, it acquires a value of V which grows as the lag
increases. It is easy to see that the magnitude of the asymmetric drift, V,, of
any stellar type is given by the difference between that type’s y-coordinate in
Figure 10.11 and the y-intercept of the straight line through the points. We
shall see that the squared random velocity, S2, is linearly related to <U 2 >,
so a linear relation holds between V, and <U 2). This relation takes the form

(o)

80+ 5kms—1? (10.12)
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(Dehnen & Binney 1998a). The bottom curve in Figure 10.12 shows the
variation of V, with B — V for MS stars.

10.3.2 Random velocities of stars

As we have already seen, important dynamical information is contained in
the dispersion of velocities,

(wi))?)?,

of each stellar type about the mean velocity of that type. The upper three
curves in Figure 10.12 show, as a function of B — V, values for o, o, :and
o, for MS stars. For every color we have o, > o, > 0,. Roughly speaking,
o, ~ 0.50, while the ratio o, /0, lies in the range from 0.55 to 0.7. The fact
that o, # o, has important dynamical implications — see Chapters 3 and
4 of BT. The value of the ratio oy /0, has often been used to constrain the
shape of the Milky Way’s circular-speed curve — see below. ‘

In Figure 10.12 all three velocity dispersions increase with B — V' color
up to B—V ~ 0.6 and are approximately constant redward of B — V ~ 0.6,
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Figure 10.13 Orientation of the velocity ellipsoid.
The direction to the Galactic center is upwards and
the Sun lies at the center of the ellipse and moves
‘\,/ towards the left. A portion of its orbit is shown.
VR L

just as the asymmetric drift V, increases with B — V to B — V = 0.61 and
then remains constant. From the theory of stellar evolution (§5.1), we know
that MS stars bluer than B — V' ~ 0.6 are all younger than ~ 10Gyr. In
contrast, redder stars are a mixture of a few young stars and mostly old
stars, and the fact that they have systematically larger velocity dispersions
suggests the operation of a mechanism that leads to a progressive increase
of the dispersion with time. We shall return to this idea in §10.7 below.

Vertex deviation In addition to squares of velocity components such
as vZ, one can average products of velocity components such as v (v, —
(vy)). For all stellar types, the averages of the two products of this type that
involve v, are smaller than the errors. However, for many stellar types the
average of the third product, v, (v, —(vy)), is significantly different from zero.
Evidently for stars of these types v, and v, are not statistically independent:
if (vg(vy — (vy))) > 0, then if v, — (v, ) is measured for some star and found to
be positive, that star is more likely have a positive than a negative value of v, .
When confronted with such correlated observables, it can be helpful to find
linear combinations of the observables which are statistically independent.
Therefore we define

v = Vg C'OS L - (vy - (Uy>) sinly, (1014)
vp = vy sinly + (vy — (vy)) cosly,

where the angle [, is called the vertex deviation. Now on multiplying these
equations together we find that

(v1v2) = 3 (02 — 02) sin2ly + (va(vy — (vy))) cos 2ly. (10.15)

Hence v; and v, will be statistically independent in the sense that (vyvs) =0

if we set
2(vz (vy — (vy))
ly = %arctan<—<——(—7—2y—:—;§—y——> X (10.16)

T Y
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Box 10.2: The Velocity Ellipsoid

Suppose we wish to determine the mean-
square speed in a direction i that lies

in the plane but makes an angle 1) with
the v;-direction. (The direction to the
Galactic center is upwards.) Then since
the velocity in the direction of 1 is v, =
v1 cos® + va sin®y and (vyve) = 0, we have

(v2) = (v?) cos® ¢ + (v2) sin? ¢
— (?)(cos? Y + ¢ sin’ ),

Vi

where ¢ is the axis ratio of the ellipse shown in the figure. It is easy to
see that the coordinates of the point marked with a blob are (vy,v) =
(v3)1/2 x (gsiny, cos 9). Hence (v2)'/2 is the distance from the origin to
the blob.

The arctan function introduces some ambiguity in the definition of I,. By
convention this ambiguity is resolved such that oy = (v?)1/2 > oy = (v2)1/2,

The linear transformation (10.14) is a rotation of coordinates, so vy
and ve are simply components of velocity in directions that are inclined
by I, to the center-anticenter direction. Figure 10.13 shows a geometrical
interpretation of what is going on. If we draw the ellipse marked with semi-
axes 0; and o3, then the mean-square of the component of velocity in any
direction can be obtained by the construction described in Box 10.2. In fact,
we can generalize this construction by replacing the circle in Box 10.2 with a
sphere and the ellipse with the ellipsoidal surface that has semi-axes oy, o3
and o,. This surface is called the velocity ellipsoid. For all types of stars in
the solar neighborhood, one of its principal planes coincides with the plane
of the Milky Way, but its longest axis deviates from the center-anticenter
direction by the vertex deviation [,. Table 10.2 gives, as a function of B—V/,
values of the o; and values of I,. The latter decreases with increasing B~V
from ~ 30° for the bluest stars to ~ 10° for stars redder than B —V ~ 0.45.
We discuss the causes of the vertex deviation below.

Our discussion of solar-neighborhood kinematics has focused on MS
stars because the largest body of accurate and homogeneous data is available
for these objects. Table 10.3 shows that other stellar groups display exactly
the same general kinematic trends as MS stars, however. In particular, older
stellar groups are characterized by larger velocity dispersions and asymmet-
ric drift velocities than are younger stellar groups, and vertex deviation tends
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Table 10.2 Velocity dispersions and vertex deviations for MS
stars )

(B=V)minmax 01/kms™'  o3/01 0./01 l,/deg
~0.238 0.139 14.35704% 0.657597 0.387995 30.27%7
0.139 0.309 20.17%339 0.471357 0.40%592 228728
0.309 0.412 22.32%35¢ 0.5310:0¢ 0.42%0:0% 19.8%32
0.412 0.472 26.26%3:% 0.60735% 0.46%5:0% 102739
0.472 0.525 30.37703% 0.607005 0.4410% 6.97%3
0.525 0.582 32.937292 0.66709% 046709 1.9759
0.582 0.641 37.64%137 0.6213%8 0.56109 102738
0.641 0.719 38137371 0.6273%% 0547592 76153
0.719 1543 37.207134l 0.6970%¢ 0.49709%% 13.1757
0.610 1.543 37.91757% 0.6513%% 0.5415:02 103733

SOURCE: Data published in Dehnen & Binney (1998a)

to decline with increasing age.

The Schwarzschild distribution Each component of the velocity dis-
tribution of, say, a population of oxygen molecules at room temperature
has a Gaussian probability distribution. Schwarzschild (1907) pointed out
that a similar probability distribution can account for many aspects of the
probability distribution of stellar velocities. The main difference between
the case of molecules in air and stars is that in the former case the veloc-
ity dispersion is independent of direction, whereas, as we have seen, in the
stellar case the dispersion of a component of velocity depends strongly on
direction. Schwarzschild postulated that the probability that the compo-
nents of velocity (v, vs,v;) defined above lie in the element of velocity space
d3v = dv,dvqdu, is

d3v v2 v2 v2
PWVBvV= ———— - L4 22 z . 0.
(v)dv (27)3/201 040, xp [ (20% + 202 + 202 (10.17)

This probability distribution is know as the Schwarzschild distribution.
In §7.5 of BT it is shown to have a natural dynamical interpretation. Notice
that P is constant on ellipsoids in velocity space.

Figure 10.14 shows the distributions in U,V and W of two samples of
nearby stars for which accurate radial velocities and Hipparcos parallaxes
are available.® The upper panels are for MS stars bluer than B — V = 0.34
— these are mostly A stars. The lower panels are for K and M dwarfs from
Vyssotsky (1963). From the shapes of the upper histograms it is plausible
that the Schwarzschild distribution gives a reasonable model of the velocity

8 See Jahreiss & Wielen (1997) for details of these samples.
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Table 10.3 Kinematics of non-MS stars

Asymm. Dispersions Vertex
Stellar type drift, V, or 04 o, dev., [,(°)
Giants
A 6.4 22 13 9 27
F 13.3 28 15 9 14
G 5.9 26 18 15 12
KO 13.4 31 21 16 14
K3 11.5 31 21 17 4
M 13.1 31 23 16 7
Supergiants
Classical Cepheids 6.8 13 9 5 -
0-B5 8.2 12 11 9 36
F-M 6.5 13 9 7 18
Other
Carbon stars 27 48 23 16 -
Subgiants 23 43 27 24 -
Planetary Nebulae 24 45 35 20 -
White Dwarfs 32 5 30 25 -
Variables, P > 3004 22 50 40 30 -
Variables, P < 3004 37 80 60 60 ~

RR Lyrae, P < 0.45¢ 26 45 40 25 -
RR Lyrae, P > 0.45¢ 220 160 100 120 -
Subdwarfs 145 100 75 50 -

SOURCE: From data published in Delhaye (1965)

distributions of the A stars. However, from the shape of the lower histogram
of V components it is clear that Schwarzschild’s model cannot provide an
adequate representation of the data for stellar types that have higher ve-
locity dispersions, such as M dwarfs. Specifically, it is inherently unable to
reproduce the characteristic asymmetry of the measured distribution of V'
components: whereas the distribution cuts off sharply at positive V, it has
a long tail towards negative V.

The origin of this asymmetry in V is easy to understand. Solar-neighbor-
hood stars with negative V have less tangential motion than is required
to be on a circular orbit at Ry. Hence they are closer to apocenter than
pericenter, and we may think of them as being at home interior to the solar
circle. Moreover, the smaller a star’s value of V is, the further inside Ry its
home lies. Now from §4.4 we know that the surface densities of galactic disks
increase exponentially towards the center. Moreover, in §11.3.2 we shall find
that the velocity dispersions within a disk also increase exponentially as we
move inwards. For both these reasons we expect many more stars to visit us



634 Chapter 10: Components of the Milky Way

L’I"”"“‘_‘i""l"”‘A_‘l""“"1‘1
80 T {_ _:
sof 3 T /
N [ I I ]
40 = T T 7]
20 [ I :_ ]
0 ail=ri | 1 P i LT T
-50 0 _ 50 <50 0 _, 50 50 0 _, 50
U/kms s V/kms s W/kms s
E.].,,,,..H]y,,, L e o e e R R
60 -+ -+ —
40 | + + -
N - { +
20 - + + -
ol L n.'.mm."|,n~..|..>..|.m.‘\,.mwx,.l
-100 0 o 100 ~100 0 " 100 -100 0 o 100
U/kms s V/kms s W/kms s

Figure 10.14 Upper panels: histograms of U,V and W for a sample of 323 nearby MS
stars of MK type F1 and earlier. Lower panels: similar data for 510 K and M dwarfs.
Velocities are with respect to the LSR that is defined by equations (10.11). [From data
kindly supplied by H. Jahreiss]

in the solar neighbourhood from small radii than from large radii: not only
does the density of tourists increase inwards, but so does the size of their
travel budgets and therefore the distance from which they can visit us. The
skewness of the V distributions in Figure 10.14 is simply a reflection of these
basic facts.® The asymmetric drift discussed above is another consequence
of these facts, for the skewness of the V distribution drags the mean value of
V for a stellar type to more and more negative values the larger the type’s
velocity dispersions and therefore the skewer its V distribution.

Star streams Figure 10.15 shows the densities of MS stars of various
colors in the (U, V) plane. Each panel is for a different range in B — V, with
the bluest and youngest stars at top left and the reddest and oldest stars at
bottom right. We can immediately recognize in these plots phenomena with
which we are already familiar.
1. As one proceeds to redder groups, the distribution of stars spreads. The
increase in the o; with B — V quantifies this phenomenon.
2. Three of the maps show a clear tendency for the region of highest stellar
density to be elongated along a line that slopes from bottom left to top
right. The vertex deviation quantifies this effect.

® For mathematical models of the V distributions, see Cuddeford & Binney (1994).
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Figure 10.15 The density of stars near the Sun in velocity space. Each panel shows the
density of MS stars projected onto the (U, V) plane for a different range of B — V co]f)r,
with the bluest stars at top left and the reddest stars at bottom right. The Sun’s velocity
isat U = V = 0 and the velocity of the LSR that is defined by equations (10.11) is marked
by a triangle. [After Dehnen (1998) from data kindly supplied by W. Dehnen]

3. The lower two distributions clearly peak at V' < 0 and extend further to
negative V than to positive V. The asymmetric drift and the skewness
of the V distributions in Figure 10.14 reflects this asymmetry.

In addition to these familiar phenomena, the maps of Figure 10.15 reveal
the presence of tight clumps of stars in velocity space over and above th.e
large-scale structure that the Schwarzschild distribution reproduces. In this
connection, it is important that in Figure 10.15 each map is construct.ed from
a separate sample of stars. Consequently, structure that is pr'esent in more
than one map is almost certainly real rather than an artifact introduced by
sampling noise. .

The top right-hand panel of Figure 10.15 shows four strong peaks' in the
stellar density. The peak at (U, V) = (—10, —5) kms™! is associated w1t1h the
LSR, which is marked with a triangle. The peak at (U, V) = (9, 3) km s~ cor-
responds to the Sirius stream, that at (—12, —22)kms~?! to the Pleiades
stream and that at (—35, —18) kms~? corresponds to the Hyades stream.
Careful examination of the lower two panels of Figure 10.15 reveals that
several wiggles and lumps that might be dismissed as noise if they oc-
curred in only one plot, are evident in both plots and therefore probably
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reflect real concentrations of stars — examples are evident near (U,V) =
(—40, —45), (15, —60) and (0, —100) kms™*.

These streams, or moving groups as they are often called, are thought
to be vestiges of the clusters and associations in which most stars form
(§6.2.2). Long after their stars have drifted far apart and they are no longer
easily distinguishable by their space concentration, the U and V velocities of
their stars remain very similar and betray the stars’ common origin. Conclu-
sive proof of this common origin comes from the fact that when all the stars
of a moving group are plotted in a CM diagram, one sees the characteristic
structure of the CM diagram of a coeval cluster (§6.2.2 and Eggen 1965).

Given these facts, one would expect moving groups to be most important
for young stars and therefore most apparent in the distribution of early-type
stars. This expectation is borne out by Figure 10.15, the top left panel of
which, for stars bluer than B — V = 0, is dominated by just two moving
groups. Moreover, the brightest early-type stars in the night sky do not
lie in the Galactic plane, but rather are found in Gould’s belt in a plane
inclined by about 16°. A detailed kinematical analysis of these stars (Lesh
1968) suggests that they form an expanding group.

Interestingly, Dehnen (1998) shows that star streams do not show up
clearly in plots that involve the vertical component of velocity, W. This fact
presumably arises because the Galactic potential changes most rapidly in the
vertical direction with the consequence that as the stars of an association
drift apart, they experience significantly different vertical forces when they
are still subject to very similar radial and azimuthal forces. Clearly, once two
stars experience very different vertical forces, their vertical velocities rapidly
move apart.

Causes of vertex deviation If we imagine our Galaxy to be an axisym-
metric system in a steady state in which stars are distributed at random in
their orbits, then, from considerations of symmetry alone, we would expect
to find one axis of the velocity ellipsoid of stars in the Galactic plane pointing
exactly at the Galactic center. This expectation is borne out by dynamical
theory (see BT §7.5), but, as was mentioned earlier, the vertex deviation, [y,
often differs significantly from zero.

The existence of moving groups is significant for our understanding of
the vertex deviation for the following reason. If a significant fraction of the
objects upon which the numbers in Table 10.2 are based are, in fact, mem-
bers of a few distinct moving groups, then the number of truly independent
velocities employed is strongly reduced, and the statistical errors in the re-
sults will be seriously underestimated. In these circumstances, estimates
of the orientation of the velocity ellipsoid axes and the velocity dispersion
along these axes will be noisy. For example, if in Figure 10.15 the Pleiades
stream lay at (+12,—20) kms~?! rather than at (—12,—20) kms™?, the ver-
tex deviation would be drastically reduced, especially for stars bluer than
B-V =0.6.
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It is not clear, however, that moving groups are entirely responsible for
the non-zero values of I, in Table 10.2. A significant additional cause of
vertex deviation could be the non-axisymmetric component of the Galactic
potential. In §4.4.6 we encountered evidence that spiral structure affects
the distribution of old as well as young stars, and in §8.2.3 we saw how the
resulting spiral perturbation in a galaxy’s gravitational potential imposes a
pattern on the velocity field of the ISM. The velocities of stars must also be
changed by the same spiral gravitational field. One can show that stellar
types with small random velocities will suffer larger velocity changes than
types with large velocity dispersions — see §6.2 of BT. One may also show that
the spiral field will produce a vertex deviation (Kuijken & Tremaine 1994).
Thus observations of spiral structure and dynamics together predict that all
stellar types will show a vertex deviation, but that this will be largest for
stellar types with low velocity dispersions, just as is observed. It is not yet
clear whether spiral structure can account satisfactorily for all the observed
vertex deviations, or whether moving groups also play an important role.

10.3.3 The Oort constants

Before we go on to discuss correlations between the kinematic properties
of stars and their ages and chemical compositions, we should plug a gap
in our discussion. This gap concerns differential rotation within the solar
neighborhood. We have proceeded above as though the solar neighborhood
is of negligible size compared to the Milky Way, so that one standard of rest
applies throughout. Actually, the ‘solar neighborhood’ must be considered
to be a sphere large enough to contain an adequate sample of whatever stars
are under investigation. If these stars are intrinsically rare, for example most
kinds of giants, the sphere may have to have a non-negligible radius and the
effects within it of differential rotation may be significant.

We now show how these effects may be quantified and thus allowed for in
kinematic studies. One valuable spin-off of the analysis will be evidence that
the mean motion at each point of the disk is circular rather than significantly
elliptical, for example. Another will be important information regarding the
circular-speed curve of the Milky Way.

By analogy with the definition of the LSR (see §9.1), we associate a
standard of rest (SR) with any point in the disk: vsgr(x), is the veloc-
ity at x of the closed orbit that passes through x. With this definition,
visr = Vsr(X@). If the Milky Way were axisymmetric, vsr would be every-
where perpendicular to the local direction to the Galactic center and equal
in magnitude to the local circular speed v.(R).

By a direct extension of the logic employed in §10.3.1, we argue that
at any point in the disk, vsr(x) should lie close to the mean velocity at x
of any stellar type that has small random velocities. Hence key information
regarding vsg can be gleaned from studies of the proper motions and radial
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velocities of stars near the Sun. With this idea in mind, we now ask how the
variation of vsg from point to point will be reflected in the pattern of radial
velocities of stars near the Sun.

Let 6v(x) = vsr(x) — vLsr and let the (z,y, z) coordinate system be
defined as in Figure 10.9. Each of the two components of §v is a function of
the two variables (z,y) and may be Taylor expanded about the origin of the
(x,y) system. Since év vanishes at the origin by construction, we may write
this series in the form

86v, Obu,
Svg \ Oz Oy z 2,2
(5%) — | B8y 90y (;,) HOE ) 10.18
or Oy (10.18)

_[k+c a—2>b T 2 2
_(a+b k_c) (y)+0(w +y°).

Here the partial derivatives are evaluated at the origin and a, b, ¢, k are linear
combinations of the values of these derivatives — the reason for writing the
partial-derivative matrix in this way will emerge shortly. We expect the
mean radial velocity of the stars at x = (z, y) to be the projection of év on
to x:

1

Vlos = —X - OV

4 (10.19)

=~ [(k + ¢)z? + (k — ¢)y* + 2azy]

o~ d[
where d = (22 4 y?)!/? is heliocentric distance as usual. In terms of Galactic
longitude I, we have z = dcosl and y = dsinl, so with the aid of two
trigonometric identities equation (10.19) becomes

V1o = d(k + ccos 21 + asin 21)+ O(d?). (10.20)

This equation suggests that we could determine the constants a, ¢ and k by
measuring the radial velocities of stars of similar distances and plotting the
results as a function of longitude I. The stars could be selected to be stars
of given spectral type and apparent magnitude, thus guaranteeing that they
all have similar distances.

The constant b can be determined from the proper motions of stars. To
see this, let 6v; be the component of velocity perpendicular to the line of
sight. Then
%(x&vy — ybvg)
=d(b+acos2l — csin2l) + O(d?).

1
S, = =(x X 6v), =
ve=4(xx6v) (10.21)

Hence from a plot of the proper motion y; = v;/d as a function of | we can
determine a, b and c.
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The relations (10.20) and (10.21) above are completely general — they
assume only that vgr varies smoothly in the solar neighborhood. What
do they reduce to if we assume that the disk is in circular rotation with
angular speed 2(R)? For this case, equation (9.3) gives an exact relation
for vjos(l, R). To obtain a relation equivalent to equation (10.20), we need
to Taylor expand the right-hand side of equation (9.3) in powers of d. On
Taylor expanding Q(R) to first order in R — Ry, equation (9.3) yields

vios(l, B) ~ %

(R - RO)RO sin!
Ro R (10.22)
= —24(R- RO)EO sinl,

where Oort’s constant A is defined by

dQ v dv
2( dR)RD 2<R dR)RO' (10.23)

On neglecting d? in equation (9.16), we have

(R— Ro)(R+ Ry) = R* — R2 ~ —2Rydcosl, (10.24) .
so approximating (R + Rp) by 2Ry, we may write to first-order in d
(R — Ro) = —dcosl. (10.25)
Combining equations (10.22) and (10.25) we find
Vlos ~ Adsin 21. (10.26)
’.I‘his is equation (10.20) for the special case of circular rotation. Evidently
in this case c = k = 0, and @ = A is given by equation (10.23).

To derive equation (10.21) for the case of circular rotation we have to
go back to equation (9.1). We write

ve = (lg - §Z| x [fUR) x R~ £(Ro) X RO])
- (R —R s {R(R) x (R~ Ro) + [UR) - A(Ro)] x R"})
~ d2.| (R-Ro) Ro z
~QRd+ G| g
(10.27)
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Box 10.3: The AR; Formula

We can derive a useful formula from equation (9.4) for the terminal
velocity (see §9.2.3) in the direction ! by writing
Q(Rosinl) — Q(Rp) =~ da Ro(sinl —1) for 1~90°. (1)
dR ) p.
Substituting for d2/dR from (10.23), equation (9.4) becomes, to first
order in (1 — sinl),

v((1) = 2ARo(1 — sinl) for 1~ 90°. (2)

This formula is useful because it links two quantities that are key but hard
to measure accurately, A and Ry, to the terminal velocity curve, which
can be measured quite accurately — see §9.2.1. Kerr & Lynden-Bell (1986)
list several determinations of ARy, and find that recent observations give
ARy = 108 + 3kms™!. The data plotted in Figure 9.16 yield a rather
larger value, ARy ~ 115kms~?, but with considerable uncertainty.

By drawing the appropriate triangle it is easy to see that (R — Rp) - Rg =
—dRy cosl. When we substitute this relation and equation (10.25) into equa-
tion (10.27), we find

dQ,
vy =~ Q,(Ro)d + dRoﬁ o cos?l

dQ,
T Ro(l + cos 2l)).

(10.28)

= d(9.(Ro) + 3 Ro

We now recall that, because the Milky Way rotates clockwise, 2, = —(, and
define Oort’s constant B by

dQ,\
= _ 1 z
B=-(0+3R5E),
(10.29)
_ 1% + dv.
(5 6),,
Equation (10.28) then becomes
Ut
p=—= B + Acos2l. (10.30)

This is equation (10.21) for the case of circular rotation. Evidently in the
case of circular rotation b = B is given by equation (10.29).
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A measures the shear in the disk at the Sun. It would be zero if the
disk rotated like a solid body, such as a compact disk, for then  would be
independent of radius and, by equation (10.23), A would vanish. B measures
the vorticity of the material of the disk, that is, its tendency to circulate
about any given point — see Problem 10.8. From equations (10.23) and
(10.29) it immediately follows that

de| 448 (10.31)
Ry

ve = Ro(A— B) and

In §8.2.4 we saw that the circular-speed curves of spirals are flat or gently
rising at large radii. If the Milky Way’s circular speed curve followed this
pattern at the Sun, we would have A+ B < 0.

Estimating the Oort constants Kuijken & Tremaine (1991) reviewed
the observational constraints on ¢ and k, and concluded that

c=06+11kms 'kpc™?, k=-035+05kms 1kpc™!. (10.32)

Thus these two constants are zero to within the errors, just as they should
be if the Milky Way is axisymmetric. In view of this result, we shall assume
that a = A and b = B, and henceforth make no distinction between these
logically distinct entities.

A can be determined either from radial velocities [equation (10.20)], or
from proper motions [equation (10.21)]. Since the determination of v.(Ry) is
one of the harder problems in Galactic structure, equation (10.23) is usually
used to determine v.(Rp) from A rather than vice versa. Notice that the value
of A derived from radial velocities is inversely proportional to the assumed
distances d of the observed stars, and must be updated whenever there is an
improvement in the accuracy of the standard distance scale.

Fundamentally, B can only be obtained from proper motions. Tradition-
ally, equation (10.21) has been used. The great drawback of this technique is
that any rotation of one’s astrometric system (§2.1.5) will directly contribute
to the measured value of B. To show this, we suppose that our astrometric
system rotates at angular velocity w, and calculate the contribution §y; that
this rotation makes to the left-hand side of equation (10.21). The rotation of
the system adds X X w to the measured proper motion of a star that lies in
the direction X. We wish to calculate the component of this proper motion
that is perpendicular to the normal to the Galactic plane, z. This component
is

ZX[EXw)x2=(2-X)2Xxw— (2 -w)z X%k (10.33)

For stars that lie within the plane, Z2-% ~ 0 and Z X X is just the unit vector
in direction of increasing longitude I. Hence

oy = -z - w, (10.34)
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which is obviously independent of I. However, in.equatlon ’(10.%1);]356 ri(s:
precisely the term that is independent of [, so rotation of on; s astro petric
system directly affects the measured value of B. Moreove.r B is fsma ,n o
pressed in sensible units (like A and the Hubble constant it 1s a re::_uf ye
its value is ~ —4 X 10~16 Hz. So one has to be very sure that one’s tragi
is not rotating before reporting a measm:ement of B !. It is a trlbutﬁ c; th:
diligence of astronomers that the errors in astrometric systems suc al ot
FK5 that are based on the dynamics of the solar system (§2.1.5%, are on 1:y of
this order. Even so, values of B that are lgased ;pondan extragalactic system
9.1.5) are clearly to be preferred. '
suck Izzirihgclgﬁlie(ﬁ-Bell)(wSG) reviewed the observational constraints on A

and B and concluded that

- ~lgpct. (10.35
A=144+12kms 'kpc™!,  B=-120+28kms kpc~t. (10.35)

From the proper motions of Cepheids that were measured by the Hipparcos
satellite (§2.1.3), Feast & Whitelock (1997) found

- ~lkpc™t. (10.36
A—148+08kms 'kpc™!, B=-124%06kms™ kpc . (10.36)

Since Hipparcos measured proper motions on the ICRS, these estlmatgs arle1
the most reliable values of the Oort constants, an.d sh'ould supers:ie e a

earlier values. Since A > |B| they imp/ly ; g;rll{tly fallhng circular-speed curve

erically, v.(Ro) = 218(Ro/8kpc) kms™". .

* R(l)l.elc\le‘ilrtriy an irzc’rigct(ling) alternative to equ.ation (10.21) has arxse(r;, n:amely
measurement by the VLA of the proper motion of thel compact radio bI(;ugc'e
Sgr A*, which is generally thought to mark the Galactic center (§95) fas io
observations at seven epochs between 1981 anfi 1994 of the pos%tlon 1;) kgr
A* relative to extragalactic sources show that it has proper motion (Backer

1B
1996 .
: (i, ) = (—6.55 £0.17,-0.48 & 0.12) masyr™'. (10.37)

This proper motion is the sum of the proper moti’on of Sgr A* w‘lt}}: _res'lzeclg
to the Galactic center and the reflex of thef Sun’s velocity, whlchs V:[ Isle
the sum of v.(Ro) and the solar motion with respect to the LS l.ft irﬁ
we subtract the contribution of the latter for 1Ro = 8kpc,, we are E 1;wtlh
(1), pp) = (—6.24 +0.17,—0.30 £ 0.12) masyr- . Clearly My must' re.fciac tle
intrinsic motion of Sgr A*, and the fact that 1t' does no_t differ signi ca,n.tir1
from zero encourages us to believe that Sgr A* is essentially stat%onaq; gv:; )
respect to the Galactic center. In this case, from the first of equations (10.

it foll that _
i follows p,=A-B=301% 0.8kms Tkpct, (10.38)

which is marginally inconsistent with equation (10.36).
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10.4 The structure of the stellar disk

In the last section we saw that different spectral types have characteristically
different velocity dispersions. The discovery of this and related correlations in
the 1950s constituted one of the major advances in our understanding of the
structure and history of the Milky Way. In this section we investigate these
correlations in detail and explore their implications for Galactic structure
and evolution.

We speculated above that the correlations between spectral type and
kinematics might be connected with the different mean ages of stars of dif-

ferent spectral types. We now pursue this hint by looking at samples of stars
to which ages can be assigned.

10.4.1 Ages and metallicities of nearby stars

The stars which can most readily and reliably be assigned ages are dwarfs
of MK type G and earlier: such a star begins to turn off the ZAMS within
10Gyr (§5.1), and as it moves away from the ZAMS it can be dated from
its position in the CM diagram. Moreover, an interesting upper limit can
be placed on the age of any such star that is still on the ZAMS. For our
present purposes, ' and G stars are most interesting because their lifetimes
are comparable to the long time-scales characteristic of Galactic evolution.
Edvardsson et al. (1993) report the results of a major study of such
objects. They obtained high-quality spectra and space velocities for 189
nearby F and G dwarfs. By fitting sophisticated model atmospheres to their
spectra they obtained for each star an age and the abundances of the elements
O, Na, Mg, Al, Si, Ca, Ti, Fe, Ni, Y, Zr, Ba and Nd. From §5.2.1 we
recognize Na and Al as odd-light elements, Mg, Si and Ca as a elements,
Ti, Fe and Ni as iron-peak elements and Y, Zr, Ba and Nd as s-process
elements. Their sample of stars was selected by searching a large catalog
of stars with Stromgren uvbyf photometry (§2.3.2) for stars of appropriate
spectral type and age. Consequently, no inferences can be drawn from their
results concerning the fractions of stars that have given ages or abundances,
but currently they provide some of the best information regarding the mutual

- dependencies between abundances, velocity dispersion and age.

Correlations between abundances The left-hand panel of Figure 10.16
demonstrates that the abundances of the light and heavy s-process elements
Y and Ba are tightly correlated, as theory predicts. The right-hand panel of

~ Figure 10.16 shows that the abundances of secondary elements such as Ba

increase faster than those of primary elements such as Mg — the slope of the
mean relation in this panel implies that the abundance of Ba varies as the
abundance of Mg to the power 1.7. In §5.2.1 we argued that, in the absence
of neutron poisons, the slope of this relation would be 2, and will be smaller

if poisons are present. Therefore a slope of 1.7 is entirely consistent with
+hanwer



