УТВЕРЖДАЮ:

Директор Федерального государственного

бюджетного учреждения науки

Главной (Пулковской) астрономической обсерватории Российской академии наук д.ф.-м.н. Ихсанов Назар Робертович

"<u>И" августа</u> 2025 г.

ОТЗЫВ ВЕДУЩЕЙ ОРГАНИЗАЦИИ

Федерального государственного бюджетного учреждения науки Главной (Пулковской) астрономической обсерватории на диссертацию СИЗОВОЙ Марии Дмитриевны «Сближение Солнечной системы со звездными скоплениями», представленной на соискание ученой степени кандидата физико-математических наук по специальности 1.3.1. — Физика космоса, астрономия

Актуальность темы диссертации. Диссертация Сизовой Марии Дмитриевны посвящена комплексному изучению рассеянных звездных скоплений (РЗС). Для ряда скоплений уточнены важнейшие физические параметры с использованием высокоточных современных данных из каталогов проекта Gaia. Главной же задачей исследования является анализ движения РЗС в галактическом диске, при этом изучается возможность их сближений с Солнечной системой в прошлом.

Изучение гравитационного влияния на кометное облако Оорта, производимое различными объектами – звездами, скоплениями, гигантскими молекулярными облаками, наконец, Галактикой, является интересной и

важной задачей. Рассмотрение ее особенно актуально в настоящее время в связи с появлением массовых звездных каталогов, содержащих результаты высокоточных измерений астрометрических и спектрофотометрических характеристик, полученных в результате выполнения космических миссий, таких как Hipparcos или Gaia.

Суть проблемы сближений заключается в том, что гравитационное воздействие на кометное облако Оорта какого-либо достаточно массивного тела, сближающегося с Солнечной системой, может приводить к дестабилизации облака Оорта, к формированию кометных ливней, движущихся в центральную часть Солнечной системы, в конечно итоге, к бомбардировке Земли кометными телами.

В настоящее время хорошо известны работы различных авторов по изучению сближений с Солнечной системой отдельных звезд. Известны также оценки влияния на облако Оорта, производимые гигантскими молекулярными облаками или Галактикой – так называемый галактический прилив. Однако изучением сближений РЗС и их шлейфов с Солнечной системой до последнего времени по разным причинам мало кто интересовался. Таким образом, диссертантом фактически занята своеобразная уникальная ниша, что похвально. Тема работы, безусловно, является актуальной. Полученные в диссертации оценки для ряда РЗС могут служить хорошим заделом для продолжения работы в этом направлении.

Объем и структура работы. Диссертация состоит из введения, трех глав, заключения и двух приложений. Объем диссертации составляет 119 страниц, включая 42 рисунка и 27 таблиц. Список литературы содержит 141 наименование.

В первой главе описана трехкомпонентная осесимметричная модель гравитационного потенциала Галактики, применяемая в дальнейшем для построения галактических орбит РЗС. Модель включает три компонента: балдж, диск и гало. Балдж представлен степенным сферическим потенциалом, диск — потенциалом Миямото-Нагаи, а гало — профилем Наварро-Френка-Уайта.

Важно отметить, что в диссертации проведено довольно подробное сравнение указанной выше осесимметричной трехкомпонентной модели с более сложной моделью, которая включала влияние бара и спиральной волны. При этом был сделан выбор в пользу осесимметричной модели.

Во второй главе описаны результаты определения физических и кинематических параметров двух старых РЗС — NGC 2158 и King 11. Использованы данные из каталогов Gaia DR2 и Gaia EDR3. При этом лучевые скорости звезд были взяты из каталогов Gaia и LAMOST DR5. Для определения членства звезд в скоплениях применен вероятностный метод на основе диаграмм собственных движений. Галактические траектории РЗС строились назад во времени в соответствии с параметрами, определенными диссертантом ранее. Был тщательно выполнен анализ ошибок измерения исходных данных.

В третьей главе проведен анализ сближений более 100 РЗС с Солнечной системой на интервале времени 5 млн лет в прошлом. Изучены антиапексы ближайших РЗС и афелии орбит долгопериодических комет. Использован метод LB-диаграмм (где L и В это галактические координаты радианта объекта) для сопоставления направлений движения скоплений и комет.

Было найдено, что в большинстве случаев значение минимального расстояния сближения РЗС с Солнечной системой d_min составляет более 60 пк. Однако, сближение со скоплением Гиады рассмотренное более детально. Как оказалось, около 0.87 млн лет назад центр скопления находился от

Солнца на расстоянии d_min = 24.8 пк. Для оценки влияния ошибок входных параметров применен статистический подход с вариацией входных данных, по результатам которого найден диапазон возможных значений d_min, составляющий 24.7–24.9 пк

Проведено интегрирование орбит звезд, входящих в состав шлейфов Ги ад. При этом были выявлены близкие (до расстояний менее 7 пк) сближения для некоторых из таких звезд. Исследован кумулятивный эффект от прохождения звезд шлейфов Гиад, проведены оценки приращения скорости комет облака Оорта и проанализирована возможность изменения их орбит.

В приложении А дан текст программы, предназначенной для вычисления параметров сближения d_min и t_min.

В приложении Б дан каталог параметров сближений Солнечной системы и РЗС (**Б.1**) и каталог параметров сближений Солнечной системы и звезд скопления Гиады по данным Gaia EDR3 (**Б.2**).

В заключении приведены результаты диссертационной работы, которые состоят в следующем:

- 1). Для рассеянных звездных скоплений NGC 2158 и King 11 уточнены такие их физические характиеристики, как изохронный возраст, значение индекса металличности и расстояние от Солнца. Для этих РЗС также определены орбитальные параметры, включая апоцентр, перицентр, эксцентриситет и максимальное отклонение от галактической плоскости.
- 2). Анализ сближений РЗС с Солнечной системой за последние 5 млн лет показал, что скопление Гиады сближалось с Солнечной системой на расстояние 24.8±0.15 пк приблизительно 0.87 млн лет назад, а отдельные звезды скопления могли приближаться к Солнцу на расстояние до 2.11 пк.

- 3). Рассчитаны возмущения орбит комет облака Оорта под влиянием гравитационного воздействия скоплений. Для Гиад максимальное приращение скорости комет составило 0.116 м/с, что может привести к значительным изменениям орбит комет, находящихся в афелии.
- 4). Показано, что сближения РЗС с Солнечной системой могут оказывать влияние на динамику комет облака Оорта. В частности, сближение Гиад могло привести к миграции комет из внешних областей Солнечной системы к орбите Нептуна.
- 5). Обнаружено, что положения антиапексов скоплений и афелиев долгопериодических комет могут совпадать, что указывает на возможное влияние скоплений на появление новых комет.

Достоверность изложенных в работе результатов гарантируется применением хорошо разработанных и проверенных численных методов, применением надежной модели гравитационного потенциала Галактики, а также использованием высокоточных астрометрических и спектрофотометрических данных, полученных в результате выполнения наземных и космических наблюдений.

Практическая значимость диссертации заключается в том, что полученные результаты могут быть использованы для прогнозирования влияния сближений РЗС на малые тела Солнечной системы.

Замечания.

• На стр. 14 при обсуждении выбора значения расстояния Солнца от центра Галактики R_0 диссертант пишет фразу "Выбрать самое надежное значение практически невозможно", с которой трудно согласится. Ведь имеется целый ряд работ, где по большому

статистическому ансамблю авторы вычисляют среднее значение R 0 с указанием ошибки результата. Причем, диссертант сама дает ссылку на одну из таких работ – Малкина 3.М. В настоящее время ошибка R_0, поученная на основе такого анализа, составляет 0.1-0.2 кпк. Такую ошибку интересно было бы, наряду с ошибками расстояния, компонент лучевой скорости, включать собственного движения неопределенностей статистическом моделировании ДЛЯ оценок параметров сближения.

- В тексте нарушен порядок следования рисунков 3.7, 3,8 и 3.9. Т.е., вслед за Рис. 3.6 на стр.64 идет уже Рис. 3.10 на стр. 70.
- Не совсем понятно почему в тексте на стр. 65 и в таблице 24 для звезды Gaia DR2 3328617079087341440 указаны отличающиеся друг от друга значения параметров сближения d_min и t_min. В тесте даны d_min = 6.27 ± 02 пк и t_min = -1.59 ± 001 млн лет, а в таблице d_min = 6.33 пк и t_min = -1.61 млн лет.

Заключение. Результаты, представленные в диссертации достаточно полно отражены в пяти публикациях, четыре из которых опубликованы в высокорейтинговых журналах, входящих в международную базу данных Astrophysics Data System, а также в список рекомендованных ВАК для публикации результатов кандидатской диссертации. Личный вклад диссертанта четко указан как в диссертации, так и в автореферате. Автореферат правильно отражает содержание диссертации.

Результаты диссертации будут использоваться в исследованиях, проводимых в ИНАСАН, ГАИШ, САО РАН, ГАО РАН и других астрономических учреждениях России, СНГ и других стран.

Сделанные замечания не меняют общей положительной оценки работы. Диссертация Сизовой Марии Дмитриевны «Сближение Солнечной системы со звездными скоплениями» удовлетворяет всем критериям, установленным Положением ВАК о порядке присуждения степени кандидата наук, а ее автор Сизова Мария Дмитриевна, заслуживает присуждения ей ученой степени кандидата физико-математических наук по специальности 1.3.1. — Физика космоса, астрономия.

Отзыв составил Бобылев Вадим Вадимович, заведующий лабораторией динамики Галактики ГАО РАН, доктор физ.-мат. наук, Россия, 196140, Санкт-Петербург, Пулковское шоссе дом 65 корпус 1, эл. почта vbobylev@gaoran.ru, тел. +7 921 4233953.

Сведения о ведущей организации

Федеральное государственное бюджетное учреждение науки Главная (Пулковская) астрономическая обсерватория, Россия, 196140, Санкт-Петербург, Пулковское шоссе д. 65 корп. 1, эл. почта map@gaoran.ru, сайт www.gaoran.ru, тел. +7 (812) 363-7207.

Зав. лабораторией динамики Галактики ГАО РАН,

г.н.с., доктор физ.-мат. наук

В.В. Бобылев

Подпись В.В. Бобылева удостоверяю,

Ученый секретарь ГАО РАН,

кандидат физ.-мат. наук

11.08.2025 г.

О.Ю. Барсунова