
Version January 8, 2020
Preprint typeset using LATEX style openjournal v. 09/06/15

A BEGINNER’S GUIDE TO WORKING WITH ASTRONOMICAL DATA

Markus Pössel
Haus der Astronomie and Max Planck Institute for Astronomy

Contents

1. Introduction 1
1.1. Types of data 2
1.2. Types of tools 3
1.3. Concepts and operations 3
1.4. Software/language choices 4

2. Data basics: images, spectra, tables 5
2.1. Images: Colour, brightness, pixels 5
2.2. Images: PSF and noise 7
2.3. Images: Noise and flatfielding 8
2.4. Images: astronomical information 10
2.5. Spectra 11
2.6. Data cubes 14
2.7. High-level data: catalogues and tables 15

3. SAOImage DS9 and astronomical images 18
3.1. Loading a Hubble image 18
3.2. A first look at the Eagle Nebula M16 19
3.3. Coordinates: Navigating the image 20
3.4. Meta-Information: the FITS header 21
3.5. Making a colour image 22
3.6. Catalogs 23
3.7. Photometry with regions and statistics 24
3.8. Profiles 25

4. TOPCAT and table data 26
4.1. Opening a table file 27
4.2. Making a sky plot 28
4.3. Virtual Observatory (VO) services 28
4.4. Basic ADQL queries 30
4.5. Selections and subsets 32
4.6. More on plotting 34
4.7. Histograms 37
4.8. A quick look at a spectrum 37

5. Getting started with Python 38
5.1. Installing Python 39
5.2. Using Python in Spyder 39
5.3. Modules 41

6. Basic operations with Python 42
6.1. Meet your new versatile calculator 42
6.2. Units and constants 42
6.3. Random numbers 43
6.4. Strings 43
6.5. Conditions 44
6.6. User-defined functions 45
6.7. Timing your code 46

7. Taming long data sets: Lists in Python 46
7.1. A list of galaxies 46
7.2. Doing something element by element 47
7.3. Operations involving more than one list 48
7.4. Creating lists simultaneously 49
7.5. Numpy arrays 50
7.6. Variable types, lists, arrays and speed 50
7.7. Strings and base n numbers as lists 51

8. Basic plotting with Python and Matplotlib 52
8.1. Plotting a function 52
8.2. Making a plot look better 52
8.3. Annotating plots 53
8.4. Figure size 54
8.5. Scatter plots 54
8.6. Fitting data 55
8.7. Histograms 56
8.8. Saving figures 57
8.9. Glueing data sets 57

9. Importing table data into Python 57
9.1. Opening a FITS table in python 57
9.2. Opening an ASCII table in python 58
9.3. Accessing astronomical data bases 59

10. Astronomical image manipulation with Python 60
10.1. FITS files and python 60
10.2. Displaying (showing) an image 60
10.3. Pixelwise operations 61

11. A simple simulation 63
11.1. Step-by-step numerical integration: Euler

method 63
11.2. Numerical errors 65
11.3. Velocity Verlet algorithm 65
11.4. A simple two-dimensional simulation 66

12. Conclusion 70

1. INTRODUCTION

Compare professional astronomy today with how it was
50 years ago, and you will recognise some continuity —
but also a number of fundamental changes. Perhaps the
key change is that astronomy has come to rely almost
completely on digital data. Modern telescopes with their
CCD cameras produce digital images and, with the help
of suitable dispersive elements, digital astronomical spec-
tra. An in-depth analysis of a particularly well-studied
object will be able to make use of digital images and
spectra taken at different wavelengths — some taken by
ground-based telescopes and some, like extreme ultra-
violet or X rays, which can only be provided by space
telescopes.

Furthermore, in-depth studies of selected objects are
only part of what modern astronomy has to offer. We
also live in an era of extensive surveys: large-scale under-
takings to photograph, or take spectra of, wider regions
of the sky in a systematic way. These surveys not only
produce many images and spectra, but also extensive cat-
alogues of the objects observed, listing various of their
properties. With such catalogues comes the ability to
make statistical deductions about astronomical objects:
If you want to know whether, say, elliptical galaxies are,
in general, brighter than spiral galaxies (to pick an ar-
tificially simple example), you, consult a suitable galaxy

ar
X

iv
:1

90
5.

13
18

9v
2

 [
as

tr
o-

ph
.I

M
]

 7
 J

an
 2

02
0

2

catalogue and look up the brightness values for a large
number of elliptical and a large number of spiral galaxies.

Modern surveys produce considerable amounts of data.
For home use, we have become used to Gigabytes (1 Gi-
gabyte =1000 Megabyte) and Terabytes (TB; 1 Terabyte
= 1000 Gigabyte): a DVD holds 4.7 Gigabytes, and hard
drives now routinely hold a Terabyte or more. The ESO
Survey Telescope VISTA produces about 150 TB worth
of data per year, and the Large Synoptic Survey Tele-
scope (LSST) currently under construction is predicted
to produce 500 TB worth of image data per month.

Then, there a increasingly large and detailed simula-
tions. Take the IllustrisTNG simulation, which follows
the evolution of a large portion of the universe from
shortly after the Big Bang to the present. The small-
est but most detailed of the TNG runs, TNG50, follows
the fate of a cube that, in the present universe, has a
side-length of 50 Mpc. Within this volume, matter is rep-
resented by 10 billion point particles representing Dark
Matter and 10 billion point particles representing gas.
The two simulation runs TNG300 and TNG100 which
were made available to the public in December 2018 sum
up to more than one Petabyte of data (PB; 1 Petabyte
= 1000 Terabytes).

Increase the amount of data, and at some point it will
become impractical to download a complete data set onto
your own computer for analysis. This is where data base
operations become important: the data is stored in ded-
icated data centres, and is accessible online; in order to
work with the data, you use the Internet to send specific
queries (”Give me the list of all galaxies on the Southern
hemisphere which are brighter than X”). In this way, the
only data you download is the data you specifically need
for your research. The next step is not far off: when even
those pre-selected data sets become too cumbersome to
handle, researchers can run their analysis programs re-
motely on the dedicated servers where the data is stored.
Infrastructure to allow just this, notably JuPyter note-
books, are becoming increasingly common.

All this implies that digital data analysis skills are part
of the essential skill sets of modern astronomers. Some
of the skills needed for a given research project will be
very specific, involving custom software to be used for a
very particular kind of analysis, or custom software to
be written by the researcher herself. These special skills
must be learned and honed on the job. But there are
other skills which are more elementary and more gen-
eral. Teaching a selection of those skills is the purpose
of this text. It was originally written for interns at Haus
der Astronomie in Heidelberg, in particular for partici-
pants of our International Summer Internship Program1

aimed at students in the final years of high school, or
for students who have just finished high school and are
about to start college.

The text is meant to give a first introduction to work-
ing with astronomical data. It does not cover the more
detailed astronomical use cases, but instead is meant to
help students familiarise themselves with the basic tools
needed for such work, and learn to apply basic techniques
and tools that are fairly universal.

1 http://www.haus-der-astronomie.de/en/what-we-do/
internships/summer-internship

1.1. Types of data

When it comes to data from observational astronomy,
most data sets we will be dealing with fall into one of the
following categories:

• Image data — in its simplest form, an image is
a two-dimensional array of pixels, where each pixel
value denotes a brightness value. In an ordinary
color image, each pixel will have three brightness
values, denoting the contribution from red, green,
and blue (RGB). Since astronomers use many spe-
cialist filters beyond these three colors, astronomi-
cal ”color” images can have even more color values
per pixel. Astronomical images usually show a re-
gion of the night sky.

• Spectra — simple spectra show us how the en-
ergy of the light emitted by an object is distributed
among the different possible wavelengths. Such
simple spectra are one-dimensional: for each wave-
length value, we know the contribution of light
from that particular wavelength region.

• Data cubes — think of these as an enhanced ver-
sion of astronomical images. An example is a data
cube from what is known as integral field spec-
troscopy (IFS); such a data cube is like a two-
dimensional image, but now each pixel contains not
a brightness value, but a whole spectrum received
from the region of the sky within that pixel. Since
we have a one-dimensional spectrum for each pixel
of a two-dimensional image, that gives us in effect
a three-dimensional object: a data cube

• Catalog data — on a higher level of analysis, as-
tronomers make catalogues of the properties of dif-
ferent types of astronomical objects. A star cata-
log, for instance, could list position, proper motion,
parallax, brightness (in various wavelength bands),
and effective temperature for each of a specific se-
lection of stars.

This list is not complete — for instance, in interferomet-
ric imaging, when you are trying to reconstruct an image
by combining coherently the measurements of different
telescopes (“aperture synthesis”), your raw data will be
time-stamped data from the single telescopes, and the
initial processing will involve cross-correlating the data
between those telescopes. But while the list is not com-
plete, it should cover the great majority of current astro-
nomical use cases.

We will take a first look at examples for each data
type in section 2. These different data usually come with
meta-data, that is, descriptive information about the
data. Astronomical images typically include information
about the circumstances of when and how the image was
taken (what telescope, what time, what exposure time,
what pointing?), and about where in the sky the object
in question is located (in the shape of data allowing the
user to relate image pixels to an astronomical coordinate
system).

For simulations, the situation is more diverse, but there
are two fundamental schemes:

• N-body simulations — here, matter is repre-
sented by point particles. A point particle can rep-

http://www.haus-der-astronomie.de/en/what-we-do/internships/summer-internship
http://www.haus-der-astronomie.de/en/what-we-do/internships/summer-internship

3

resent different kinds of objects: it could be a lump
of gas, or a star, or a group of a few 104 or 105 stars
in a galaxy, or a lump of dark matter. But every
particle has a position in space, and as the simula-
tion runs, the particle positions change.

• Grid-based simulations — here, space is divided
into basic cells, for instance a space-filling set of
small cubes. For each cell, basic properties (such
as density, temperature, quantities of the different
types of matter present) are tracked; those values
change as the simulation runs. In more complex
simulations, the grid itself can also change in ways
that are adapted to making the simulation more
efficient (“adaptive grid”).

1.2. Types of tools

When it comes to the tools for working with these var-
ious kinds of data, we can distinguish two types.

• Application software is software written for a
specific set of tasks. In everyday electronic life, an
image viewer allows us to inspect image data, an
image manipulation program such as Adobe Pho-
toshop or The Gimp allows us to change images in
specific ways, and Microsoft Office Excel is a com-
mon way of dealing with catalog-data in the form
of spread-sheets.

Good application software has the advantage of being
comparatively easy to operate — in line with modern
usage, such software offers you a menu structure for the
selection of task, and a graphical and interactive inter-
face. Also, while application software performs only a
limited selection of tasks, good application software per-
forms those tasks rather well, having been written by
specialists who have a lot of experience with the kind of
task in question.

Increasingly, web applications are playing an impor-
tant role in everyday life — applications that you run in
your web browser, with a grey area between more com-
plex applications and dynamically generated web pages.
Dynamic web content does play an important role in as-
tronomy, as well: Many researchers in astronomy will
begin their day by looking over the new research arti-
cles posted as e-prints at [https://arxiv.org/list/astro-
ph/recent], use NASA’s Astrophysical Data Service
ADS [https://ui.adsabs.harvard.edu/] to look up spe-
cific research articles, find information about spe-
cific objects in the CDS’s SIMBAD astronom-
ical data base [http://simbad.u-strasbg.fr/simbad/]
or the NASA/IPAC extragalactic data base NED
[https://ned.ipac.caltech.edu/] — and, along the rest of
us, use Google as a search tool or read up on helpful
answers on sites such as Stack Overflow.

We will use some application software in the following,
namely SAOImage DS9 for images and TOPCAT for op-
erations involving tables. But in astronomical research,
application software is usually not enough. For simple
image operations you might get by with firing up the
DS9 software, for instance. But at some point, sooner
rather than later, you will want to do something more
specialised, and more automatised, than application soft-
ware can provide. Similarly, for data analysis. In some

of the simplest cases, you might get away with loading
the catalogue in Microsoft Excel and start analyzing your
data in there. But in all other cases, including almost all
of the interesting ones, your analysis will need a little
more flexibility. That is when, again, you start writing a
bit of code that helps you choose the right entries from
the catalogues, and to produce helpful diagrams – plots
and histograms – that allow you to make sense of your
data. Then it becomes time to make use of a different
kind of tool:

• A programming language is a tool for writing
your own custom applications.

When you are using such a programming language for
data analysis, you are in effect writing yourself a cus-
tom application that can be used for the specific analysis
problem you need to solve. This approach has the ad-
vantage that you have (nearly) full control over what you
will be doing what your data.

It would not be an effective use of your time if you were
to re-invent the wheel by using a programming language
for writing your own routines for standard tasks such as
opening different kinds of data files, or standard analysis
operations. Instead, you should make use of useful col-
lections of routine operations that have been written by
helpful other people. In the ecosystems of programming
languages, these usually come in the form of libraries
or modules: chunks of codes that are easily included in
your own program, and give you pre-programmed func-
tionality you can use for your own specific purposes.
That way, you need not write everything from scratch.
But you will still need to program in order to string these
tools together to do your bidding.

What qualifies as a routine operation will depend on
context, of course. Specialised astronomical modules
provide you with tools for higher-level operations that are
routine in astronomy, but not elsewhere. An ephemeris
module will help you find the position of Solar System
Bodies, for instance. Some routines may be adapted to
a specific telescope, allowing you to reduce and analyze
that telescope’s data. While you are still learning, you
will want to avoid some of those higer-level modules and
re-invent at least some of the wheels in question, since
writing a routine for completing some specified astro-
nomical task is a good way of understanding what that
particular task, and the astronomy behind it. When have
become more advanced, ready-made modules represent a
different problem: In research, it is important that you
understand the different steps in any analysis you are
doing. Using a module which is a “black box” for you
represents a step in your analysis that you do not fully
understand. In those cases, it is even more important
than usual for your analysis to include suitable cross-
checks and tests to ensure that it is indeed doing what
you intend it to do.

1.3. Concepts and operations

In general, when working with astronomical data anal-
ysis, you need not understand all areas and aspects of a
programming language. But there are certain concepts,
and certain types of operations/manipulations, which
constitute the basic working knowledge of virtually every
astronomer working with data.

https://arxiv.org/list/astro-ph/recent
https://arxiv.org/list/astro-ph/recent
https://ui.adsabs.harvard.edu/
http://simbad.u-strasbg.fr/simbad/
https://ned.ipac.caltech.edu/

4

This starts with basic mathematical operations.
When you go from the magnitude to the flux emitted
by an astronomical object, you will need the “x to the
power of n” operation; on the way back, the logarithm.
Whenever you perform calculations with your data, you
will need the appropriate operations.

Data points come in sets: the pixel data for an image
corresponds to a two-dimensional arrangement, while a
list of properties for astronomical objects will correspond
to a one-dimensional chain of values. Programming lan-
guages feature suitable data structures for this kind of
connected data, such as lists, arrays, tuples, or differ-
ent kinds of table (the meaning of those words can differ
somewhat between one programming language and the
next).

Knowledge of these data types and the various ways of
manipulating them is a must, along with knowledge of
more basic types such as strings, integers or floating
point numbers — and of course the basic concept of
storing values in a variable in the first place!

For operations on our data, we need control struc-
tures. If we want to perform a certain operation on
every element of a list, for instance, we will need some-
thing like a for loop. In order to distinguish between
different cases — a structure that allows us to apply a
certain combination of operations to every element of a
list.

There will also be situations where we might want to
perform a certain operation on some elements of the list,
but not on specific other elements — to accomplish this,
we need if clauses, that is, tools that tell our program
to apply certain operations only if specific conditions are
met, but not otherwise.

In addition to this kind of general knowledge, which
is required when learning pretty much any general pro-
gramming language, astronomers should have at their
disposal a set of programming tools for more specific
tasks — which often equates with familiarity with par-
ticular libraries or modules. Often, we want to visualize
our data, so knowledge of how to create various kinds of
plots, diagrams or histograms (both one-dimensional
histograms and two-dimensional density plots) is essen-
tial.

Last but not least, how do we get data into our pro-
gram, and our results out again? If we have obtained the
data by downloading a file, we will need to know about
proper input/output operations (in short, i/o). For
certain data formats, such as the ubiquitous FITS image
files that are the usual format for astronomical images, or
for astronomical tables in FITS or VOTable format, there
are special functions that read the data in a way that
makes it particularly easy to start working with them.

When we do not download the data in the form of files,
but instead access astronomical data bases, there is an
additional issue. We need to tell the data base which
specific set of data we would like to access. In order to
do so, we must submit a data base query, or query
for short, to the data base: a formalized request for data,
written in a specific query language. A number of astro-
nomical data bases are organised in the shape of a Vir-
tual Observatory (VO) — data bases that conform to
certain common standards to enable easy access for all
astronomers. The query language for the VO is the As-
tronomical Data Query Language (ADQL), which

is similar to the more general Structured Query Lan-
guage (SQL, pronounced either ”S–Q–L” or ”sequel”).
Queries in this language are useful both in the context
of an application software like TOPCAT, where they can
used in the framework of the Table Access Protocol
to download a specific subset of data from an online data
base via the Internet, or as part of a Python program.

There is another aspect of all this, which would require
a tutorial of its own for proper treatment: data can be
generated by software, too. Astronomy isn’t only about
observing. In the end, we want to understand the objects
we observe. That involves creating simplified models for
these objects. If a star is (put simply) a gigantic ball of
plasma, held together by its own gravity and heated up
by nuclear fusion reactions in its core, then if we create
a simulation of such an object, using our knowledge
of the laws of physics, the resulting model should have
similar properties to a real star (as we can check using
observations).

Simulations, too, require coding. In physics, only the
simplest situations can be described “analytically”, that
is, writing down what happens in terms of simple func-
tions such as sin(x), cos(x), polynomials and the like. For
more complicated situations, you will need to simulate
what happens numerically: starting with the initial sit-
uation, and then letting the computer reconstruct, time
step by time step, what happens. We will encounter a
very simple simulation in section 11.

1.4. Software/language choices

Every text on data processing has the same problem:
For specific applications, there is usually more than one
application software, and of course there are numerous
programming languages. In teaching about data process-
ing, one should include specific examples, and students
should work through such examples themselves, gain-
ing hands-on experience with all that data processing
involves. If the author chooses to present these exam-
ples in one specific programming language, at least some
students will later, when they are working on a specific
project, need to re-learn a different programming lan-
guage.

This is not as bad as it sounds, though. Most pro-
gramming languages, and most applications, share simi-
lar concepts and functions. Once you have learned about
those in the framework of one specific programming lan-
guage, or application software, switching to another lan-
guage or software will be much easier than starting from
scratch. Thus, learning what this tutorial has to offer is
definitely not a waste of time, even if it should turn out
that later on you will need to adapt to other software.

In this tutorial, I have chosen some common applica-
tion software for simple operations: SAOImage DS9
(DS9 for short) is a comparatively simple image viewer
that also allows some basic manipulation of astronom-
ical images. TOPCAT is a standard tool for access-
ing data from the Virtual Observatory. The program-
ming language used for more complex tasks is Python,
which is widely used in astronomy. This wide use has
a great advantage: astronomers have been writing help-
ful astronomy-specific libraries and modules for Python,
and are actively maintaining them. If you’re starting a
career in astronomy, chances are that you will do your
basic programming in Python.

5

All that said, let’s get started. To get our bearings,
we start with something simple: before we delve into
astronomical Python and start coding ourselves, let us
begin with two simple use cases for application software:
In section 3, we will look at astronomical images and
combine red, green and blue filter images into a color
image. In section 4, we will look at some basic table
operations with TOPCAT.

2. DATA BASICS: IMAGES, SPECTRA, TABLES

In astronomy, just as in other sciences, we are not inter-
ested in data for data’s sake. We want to do astrophysics:
we want to use data to further our understanding of the
universe. Before we look at specific tools, and learn how
to use them, let us consider some of the properties of
astronomical data, as well as some of the specific ways
of extracting information from them.

2.1. Images: Colour, brightness, pixels

Astronomers take images of astronomical objects, us-
ing telescopes and suitable instruments attached to those
telescopes. Public versions of such images can be stun-
ningly beautiful, and contribute significantly to the fas-
cination of the general public with astronomy. The un-
derlying science images are commonly stored in a for-
mat known as FITS, which stands for the “Flexible Im-
age Transport System” — a flexible file format that as-
tronomers have been using for images, spectra, data ta-
bles and more since the 1980s. When you encounter a
professional astronomical image, it is likely to be in that
particular format, with file extensions “.fits” or “.fit” on
an older Windows machine. Figure 1 shows one of the
iconic images from the Hubble Space Telescope, namely
the open cluster Westerlund 2.

Fig. 1.— Image of the open star cluster Westerlund 2, taken
by the Hubble Space Telescope. The image data was downloaded
from spacetelescope.org. Image credit: NASA, ESA, the Hubble
Heritage Team (STScI/AURA), A. Nota (ESA/STScI), and the
Westerlund 2 Science Team

Using this image as an example, we can demonstrate a
number of properties of astronomical image data. Phe-
nomenologically, the image contains two types of infor-
mation: the stars we see in the image are much too small

for even Hubble to see any of their structure. They ap-
pear as point sources. In addition, we have extended
sources, in this case a region of ionized hydrogen (HII,
in astronomical parlance), which are, as the name says,
extended areas with varying brightness and colour.

While we tend to think of astronomical images as a
rendition of “what’s up there in the sky,” there are sev-
eral aspects in which such images are not faithful rendi-
tions — and those aspects are crucial for understand-
ing astronomical image data. Let us start with the
colours. Professional astronomical images are black-
and-white images. One reason for this is that digital
cameras are, at their most basic, black-and-white. For
each pixel, they can only record how much light has fallen
onto the collecting area for that pixel (more specifically:
how many photons have fallen). Consumer cameras as
in your smartphone or your digital camera are only able
to produce colour images because they have an array of
filters installed in front of the array of light-detecting sen-
sor pixels. A common pattern is the Bayer mask, part of
which is shown in figure 2.

1

Fig. 2.— Part of a Bayer mask pattern: an array of filters in-
stalled in front of detector pixels to enable the quick creation of a
colour image

When such a consumer camera has taken an image, the
colour information is interpolated, and a colour image is
displayed and saved. (If you have a camera that can
save images in some kind of “raw” mode, you can see the
not-yet-interpolated pattern.)

For astronomical images, a fixed filter mask is imprac-
tical for several reasons. Astronomers would like to get
the full resolution for their images, so reducing resolution
in each color band by having information about the green
brightness in every second pixel only, and about red and
blue in every fourth pixel, is a drawback. Colour inter-
polation means that some of the colour information gets
lost. Also, astronomers use a bewildering array of possi-
ble filters, not just those corresponding to red, green, and
blue (R, G, B) — some of those filters capture a wider
wavelength range, while narrow-band filters might cap-
ture just a particular spectral line. Astronomers need
the flexibility of putting these different filters in front
of their camera. On the plus side, most astronomical
objects change only very slowly. Using different filters
in succession, taking an image first through one filter,
then through the next, is perfectly feasible; those im-
ages will all show the target object in effectively the
same state. (On the rare occasions where speed is of
the essence, astronomers will use something like paral-
lel cameras observing through different filters. A case in
point are gamma ray burst afterglows, which fade on a

https://www.spacetelescope.org/images/heic1509a/

6

time scale of several minutes. The GROND instrument
at the 2.2m ESO/MPG telescope at La Silla observa-
tory was optimised for observing such afterglows through
seven different filters, simultaneously.)

From these separate images, we can reconstruct colour
images. (One simple way of doing this will be shown
in section 3.5.) If your aim is to produce a “pretty
picture,” there are several filter combinations that will
serve. Perhaps the best-known is the combination of im-
ages taken with the filters B, V, and R respectively from
the Johnson-Morgan photometric system to represent the
colours blue, green, and red.

But most images taken with the Hubble Space Tele-
scope do not include B, V and R versions. Colour im-
ages composed from them will be false-colour, and look
markedly different from the colours we see around us.
That is OK as long as you use the colours only to help
you discern structural details, but you should be aware
that the result is not a faithful rendition of astronomical
colours. (There are heated discussions among amateur
astronomers2 about what constitutes faithful colours;
some amateurs strive for the optimum of faithful colour
rendition. Their images are probably the closest you can
get these days to faithful colouring.) Figure 3 shows
two images of the same region side by side: the West-
erlund 2 image already shown in figure 1, and an image
of the same region, taken in April 2017 with the 2 m
Faulkes Telescope operated by Las Cumbres Observa-
tory at Siding Spring in Australia. The left-hand im-
age was reconstructed from three images taken through
B, V, and R filters. The red colour of the gas cloud is
probably fairly realistic. The Hubble image no the right,
while much higher resolved and full of structural details,
doesn’t show faithful colours. Few Hubble images do
(which does not take away from, but possibly adds to
their power to fascinate viewers).

Another aspect to keep in mind is the brightness scale
of the image. FITS images typically have 16-bit bright-
ness values, that is, each pixel can take on values from 0
to 216 = 65 536 (apart from a possible offset value); alter-
natively, brightness values within that range are stored
as floating-point numbers. Even in the integer case the
best current computer screens cannot faithfully display
that dynamic range. And even if they could, the result
of simply displaying pixel brightness in a linear fashion
would not let you see the interesting details, and under-
stand your image.

Published astronomical images will always3 have some
kind of (brightness) scaling applied to them. Figure
4 again shows the 2 m Faulkes Telescope image of West-
erlund 2, this time only the one taken through the red R
filter. The leftmost version has linear scaling (pixel value
linearly related to brightness shown in the image), with
the smallest pixel value taken as black and the brightest
taken as white. The only structure visible corresponds to
the locations of the brightest stars. No cloud structure
is visible in this rendition. The center version is still us-
ing a linear map, but now every pixel value smaller than

2 These days, with sophisticated technology available, the so-
called amateur astronomers are working very, very professionally
indeed, and produce spectacular images.

3 With possible exceptions when an author is trying to make a
point about scaling and astronomical images.

Fig. 3.— Two images of Westerlund 2. Image credit top: 2 m
Faulkes Telescope operated by Las Cumbres Observatory at Siding
Spring under license CC BY-2.0. Bottom image: NASA, ESA,
the Hubble Heritage Team (STScI/AURA), A. Nota (ESA/STScI),
and the Westerlund 2 Science Team

4573 is displayed as black, and every pixel value larger
than 6001 is displayed as white, and brightness values be-
tween 4572 and 6002 are displayed as the various shades
of grey in between. By concentrating on this narrow
range of brightness values, we not only see more stars,
but also some of the structure of the cluster’s hydrogen
clouds. But at this scaling, the background sky looks
rather bright. If we insert a square function — where
the displayed brightness is proportional to the square of
the pixel brightness value — we obtain a clearer differ-
entiation between the dark background and the brighter
areas corresponding to the cloud. This is shown in the
version on the right.

Choosing a good scaling is not an exact science, but
a matter of artisanship: a good scaling will serve to il-
lustrate the structures that are scientifically interesting.
But you should always keep in mind that there were
choices involved in creating the image.

A number of images are really mosaics, where sev-

https://creativecommons.org/licenses/by-nc/2.0/deed.en_US

7

Fig. 4.— Part of the Westlund 2 image taken through an R
(red) filter in April 2017 with the 2 m Faulkes Telescope operated
by Las Cumbres Observatory at Siding Spring in Australia with
different scaling. Left: Linear scaling from 0 to 65536. Center:
Linear scaling from 4572 to 6002. Right: Square scaling from 4572
to 6002

eral images have been stitched together to form a larger
picture. The beautiful Hubble version of Westerlund 2
in figure 1 is a case in point, as it is a composite image
using observations with Hubble’s Advanced Camera for
Surveys (ACS) and its Wide Field and Planetary Cam-
era 3 (WFPC3). Figure 5 shows a sample WFPC3 image
(although probably not one used in the final composite4)
pasted into the final colour image to give you an idea of

Fig. 5.— Image credit: NASA, ESA, the Hubble Heritage Team
(STScI/AURA), A. Nota (ESA/STScI), and the Westerlund 2 Sci-
ence Team

the footprint of the WFPC3. In fact, the WFPC3 in-
set is already a blend of four images, created from the
three image chips (CCDs) of the Wide Field Camera (the
three larger squares) and the image chip of the Planetary
Camera (smaller square nestled into the corner formed
by the other three).

As a next step, let’s zoom in into the WFPC3 im-
ages, more concretely: into one of the Wide Field Cam-
era squares. The result can be seen in figure 6. There
are several points of note. The first is that the image
is made up of discrete square fields: pixels. That is no
surprise if you have ever looked very, very closely at dig-
ital photographs. It also means that, at the lowest level,

4 I didn’t find any of the original WFPC3 images in the MAST
archive; all I could find were already (smaller) composites.

Fig. 6.— Zoom in on the WFPC2 image of Westerlund 2. Image
credit: NASA, ESA

working with digital images means working with pixels,
and with the brightness value associated with each pixel.

Pixel positions are described by a pair of (integer) co-
ordinates for each pixel. A schematic example is shown
in figure 7.

Figure 5: Image credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), A. Nota
(ESA/STScI), and the Westerlund 2 Science Team

Figure 6: Zoom in on the WFPC2 image of Westerlund 2. Image credit: NASA, ESA

1 2 3 4 5

1

2

3

4

5

Figure 7: Pixels and pixel coordinates

14

Fig. 7.— Pixels and pixel coordinates

The brightest pixel in the 5 × 5 array would have the
coordinates (4, 3), since it is in the fourth column from
the left, and in the third row from the bottom. (Beware,
other conventions exist! Some count rows from the top.
Some start the count at number 0, not number 1.)

2.2. Images: PSF and noise

Back to figure 6. The disk-shaped bright objects in
the image are stars. Here’s the thing: Westerlund 2 is at
a distance of about 20 000 light-years from us. At that
distance, even an especially large super giant with 1500
solar radii should subtend an angle of a mere 0.002′′.
Each pixel in the WFPC2 image has a side length of
0.1′′. If our image were a faithful map showing the
exact direction whence light reaches us from the sky,
even these largest known stars would fall within a sin-
gle pixel. Instead, they and the much more common
markedly smaller stars are smeared out and appear in
the image as disks. Figure 8 shows a brightness profile
of the star at the bottom center of figure 6. The disk
is a few pixel wide. Why the disk? Why not a single
pixel? The answer, as you probably know, is that light
is a wave phenomenon, and that a wave passing through
an opening — in this case, the aperture of the telescope
— is diffracted. The result is a diffraction pattern that
makes the image of a point source a disk (if you were
to look very closely, a disk with concentric rings around
it). The larger the telescope aperture, the smaller the
disk — which is one key reason to build ever larger tele-
scopes: ever better resolution for the resulting images.
The function that defines the brightness distribution that
results when a telescope instrument produces an image

8

10 5 0 5 10
Pixel value

0

200

400

600

800

1000

Br
ig

ht
ne

ss
 v

al
ue

Fig. 8.— Brightness profile of the bright star near the bottom
center of figure 6

of a point source is called the point-spread function, ab-
breviated PSF.

Last but not least, look at the part of figure 6 that is
not stars, but background. The background is not uni-
formly black, but mottled grey — a section, shown at
even larger magnification, can be seen in figure 9. There

Fig. 9.— Zooming in on part of the background of figure 6

are several reasons that some of the pixels are brighter,
others less bright. One is the presence of distant, un-
resolved astronomical objects. But those cannot explain
the small-scale variation from pixel to pixel — remember
that even a point source would appear as a smeared-out
disk! Instead, the variability is noise — a spurious ad-
dition that tells us nothing about the astronomical light
sources out there.

The most fundamental effect is one of statistics: light
reaches our detectors in the form of photons, of light par-
ticles. The intensity of light reaching us from a specific
source determines the probability of a photon arriving
within a certain time interval. But the arrival itself is
a random event. (You probably know a similar situa-
tion: radioactive decay, where the decay probability per
unit time is constant, but each decay will still occur at
an unpredictable random time.) This randomness trans-
lates into pixel brightness fluctuations. The relative size
of these fluctuations shrinks as the total number of pho-
tons collected grows. This is the other key reason why
astronomers want large telescopes (and in most cases still
need long exposure times, in addition): the more light
they can collect from a distant object, the smaller the

relative fluctuations, the higher the signal-to-noise ratio,
and thus the clearer the image of those distant structures.

There are other kinds of noise. If you inspect raw,
unprocessed images taken with the Hubble Space Tele-
scopes, you will find one kind that is typical for space
telescopes: traces left by cosmic particles depositing their
energy in the detector, leading to either longish streaks
or more sharply defined dots, depending on the direction
the particle was travelling. Figure 10 shows an exam-

Fig. 10.— Traces of cosmic ray particles in an image taken with
the Hubble Space telescope. Image credit: NASA and ESA

ple (albeit from Hubble targeting a different object, the
Eagle nebula). Also, there is noise from the electronic de-
vices involved (although cooling key electronic elements
down can reduce that kind of noise considerably).

2.3. Images: Noise and flatfielding

When astronomers prepare data for the extraction of
astronomical information, a process commonly called
data reduction, there are several typical steps they
take in order to reduce both the noise produced in their
instrument and the instrument’s idiosyncrasies when it
comes to recording brightness.5

The image chips consist of little pixel elements; light
falling onto a pixel sets free some electrons. In a CMOS,
each pixel also contains the electronics, including a little
amplifier, to read out a signal that indicates the number
of electrons, and thus the amount of light. In a CCD
camera, the read-out process is more involved, and in-
volves herding electrons to the end of each pixel row,
then moving them to an amplifier. In both cases, ideally,
the number of electrons will be in direct proportion to the
number of photons that have fallen onto that pixel dur-
ing the exposure time. And in the end, those electrons
are dumped onto a capacitor, whose voltage is measured.
Since the voltage across a capacitor is proportional to
the accumulated charge, the result gives us a measure of
the number of electrons, and thus of the amount of light
we have captured. The analog voltage value is fed into
an analog-to-digital converter (ADC) which converts the
voltage value into an integer digital number, correspond-

5 In preparing this section, I have profited from two on-
line sources: The lecture notes by S. Littlefair for the course
PHY217 – Observational Techniques for Astronomers he taught
in 2014, http://slittlefair.staff.shef.ac.uk/teaching/phy217/,
last access 2019-11-01, and parts of the e-book by R. A.
Jansen, Astronomy with Charged [sic] Coupled Devices (2006),
http://www.public.asu.edu/r̃jansen/ast598/2006ACCD.ebook...1J.pdf,
last access 2019-11-01.

http://slittlefair.staff.shef.ac.uk/teaching/phy217/
http://www.public.asu.edu/~rjansen/ast598/2006ACCD.ebook...1J.pdf

9

ing to analog-to-digital-units (ADUs) or, for short, to
counts associated with that pixel.

The conversion factor from the number of electrons
to ADUs is called the gain, typically given in units of
e−/ADU. Since the ADU values are digital, a gain higher
than 1 will introduce quantization noise through
rounding errors — for a gain of 6 e−/ADU, the value
1 ADU could stand for anything between 1 and 5 elec-
trons. A common range is for the digital numbers used
to store the count value to have 16 bits, and for each
pixel to have count numbers between 0 and 65 535.

There is also the question of choosing the zero level for
our voltage — that is, the level that will correspond to
the number 0 in our digitalized documentation for each
pixel. When no light falls onto the pixel, there is still
bound to be some level of noise, corresponding to a volt-
age value which is called the bias. But mapping the av-
erage bias, call it V0,avg, to the zero value of the ADU is
usually not a good idea. Our measurements of that zero-
light voltage are going to fluctuate slightly, its values
sometimes a little higher, sometimes a little lower. Fre-
quently, we will want to average images, either pixel by
pixel or after aligning the astronomical objects in those
images. When taking such averages, above-average and
below-average bias levels should cancel out. But if we
set zero ADU to correspond to the average bias, then all
fluctuations below that level will be mapped to zero as
well, and cannot cancel the fluctuations that are higher
than average. You can take care of the bias by taking a
bias frame — an image taken with your camera shutter
closed (so no external light falls onto your chip) and an
exposure time as close to zero as your camera can man-
age. Subtract that bias frame — or, again, the average
of several such frames — from your science image, and
you’ve taken care of the bias.

Depending on the type of camera you are using, and
on the type of observations, you might need to perform
different kinds of subtraction. For older CCD cameras in
particular, you might need to take a dark frame, record-
ing the contribution of electric currents due to thermal
fluctuations, and making a suitable correction. Under
excellent conditions, and in particular for infrared obser-
vations, you might need to take a sky frame to subtract
the sky brightness, including effects like airglow, faint ra-
diation emitted by the Earth’s atmosphere itself.

The corrections mentioned so far — bias frame, dark
frame, sky frame — all involved erroneous additions to
pixel values, and the correction required the subtraction
of suitable correction frames. Another, different type of
correction is necessary because the sky is bound to get
mapped to your digital image unevenly — some parts
of it too bright, others not quite bright enough. I will
illustrate this using a non-astronomical image, since the
effect is more obvious in an everyday setting. Fig. 11
shows a holiday snapshot, a lake in Northern Germany.

But you can see that the brightness is not as you would
expect: near the edges, the image becomes darker. This
is not a property of Northern-German lake landscape; it
is a property of the camera I have used to record the im-
age, an effect known as vignetting.6 In a telescope image,
you might also see dark, ring-shaped smudges reminis-

6 Actually, I have added that effect afterwards, artificially, but
let’s pretend it is real. Real vignettes look very similar.

0 1000 2000 3000 4000 5000 6000

0

500

1000

1500

2000

2500

3000

3500

4000

Fig. 11.— Holiday snap with cxslearly visible vignetting

cent of coffee stains; those are caused by dust flecks on
the telescope mirror.

Systematic brightness distortions like this can be re-
moved as follows. In our example in Fig. 11, the bright-
ness of each pixel is a combination of the brightness of
the part of the object (in this case, landscape) we have
recorded on the one hand, and the sensitivity (or lack
thereof) of our telescope-instrument combination in that
specific image region on the other.

We can reconstruct at least the relative sensitivity of
our telescope-instrument combination by taking an im-
age of a scenery with completely uniform brightness. In
that case, all brightness variations are, by definition, not
due to our target scenery (which is completely uniform),
but due to sensitivity variations. Such an image can be
seen in Fig. 12, and is called a flat field (image). In
astronomy, such images are produced either by pointing
the telescope at a uniformly lit canvas within the dome,
or else by waiting for dusk (or dawn) and pointing the
telescope at the sky, whose scattered light will be suffi-
ciently uniform across the typical narrow fields of view
of astronomical telescopes (“sky flats,” specifically ”dusk
flats” or ”dawn flats”). For the flatfield image, too, one

0 1000 2000 3000 4000 5000 6000

0

500

1000

1500

2000

2500

3000

3500

4000

Fig. 12.— Flatfield image taken with the same telescope-
instrument combination as the holiday snap, with clearly visible
vignetting

can produce dark frames (taken at the same exposure
as the flatfield image) and subtract them, resulting in
a suitably corrected master flat. That master flat en-
codes the sensitivity for each image pixel. With this in-

10

formation, we can correct for the sensitivity variations as
follows. Assume that a pixel in the master flat is twice
as bright as a second pixel. That would mean our setup
is only half as sensitive for the second pixel than for the
first. But if we were to take an image, and then to mul-
tiply the brightness value for the second pixel with the
factor two, we would have compensated for the different
sensitivity levels.

More generally, we can restore proper relative bright-
nesses of all our pixels by dividing our science frame by
our master flat, pixel by pixel. The result for our holi-
day snap can be seen in Fig. 13. The compensation is

0 1000 2000 3000 4000 5000 6000

0

500

1000

1500

2000

2500

3000

3500

4000

Fig. 13.— Flatfield-corrected holiday snap

not perfect. For instance, if fewer photons have reached
a certain detector pixel, then the statistical noise will be
somewhat larger for that pixel. Dividing the pixel value
by a factor, as one does in flatfielding, will not get rid of
that additional noise.

All in all, we have learned the basics of how as-
tronomers are reducing their image data — compensat-
ing for noise that is added to each pixel by subtracting
suitable compensation terms (bias frame, dark frame, sky
frame), and afterwards compensating for sensitivity vari-
ations by dividing by a suitable compensation term (flat-
field image).

To sum up the last few sections: The digital astro-
nomical images used by astronomers are made of pixels;
what we see is in part determined by the properties of
our target object, but in part by the properties of the
optical system used (telescope plus instrument and their
PSF), and in part by noise. The “elementary images”
are black-and-white, and usually taken through a specific
filter. When such images are displayed, additional deci-
sions were involved about how to represent brightness.
Published images frequently use colour to convey addi-
tional information — although in most cases, these are
false colour images, which do not reproduce the colour of
the object we would perceive could we view it directly.
Astronomers employ dark frames and flatfielding to re-
duce certain types of noise, and of sensitivity variations.
Sometimes, images are fit together to form a larger mo-
saic.

When working with images, we need to keep all this in
mind — after all, we want to use the information con-
tained in the image to make deductions about the astro-
nomical objects observed. To do that, we need to know
which aspects of the image really do contain informa-

tion about the object — and not information about the
telescope-instrument combination, or photon statistics.

2.4. Images: astronomical information

So far, we have talked mostly about image artefacts
— what makes an image different from the real thing.
Time to talk about the physics behind it all: What in-
formation is contained in astronomical images? The in-
formation important for classical astronomy, for a start:
Images contain position information about astronom-
ical objects, information about where exactly an object
is located in the sky (for object whose position does not
change in the usual coordinate system), or about how its
position changes over time.

In the era of classical astronomy, this was the main pur-
pose of observatories: determining the positions of stars
in the sky, as an aid to celestial navigation. This also
included measurements that allowed for precise time-
keeping: until the advent of stable quartz clocks in the
mid-20th century, documenting the periodic changes in
the night sky, in particular the diurnal motion during
one (sidereal) day, was the most accurate time-keeping
method.

In modern astronomy, determining stellar positions re-
mains an important sub-field, which for the last few years
has been dominated by ESA’s astrometry satellite Gaia.
Accurate catalogues of stellar positions not only provide
a framework for localising astronomical objects in gen-
eral. Via the parallax effect, they also provide informa-
tion about the distances of stars in our cosmic neighbour-
hood, which in turn is a prerequisite for farther-reaching
methods of astronomical distance determination. Knowl-
edge of astronomical distances is crucial for making de-
ductions about object’s luminosity. (In principle, an ob-
ject that appears to be bright in the night sky could
have a rather faint luminosity, but appear bright since it
is very close to us, or else have a really high luminosity
while being rather more distant.)

Then, there is photometry, that is, determining the
(apparent) brightness of astronomical objects. If we have
chosen proper exposure times, and made all necessary
corrections, we could deduce the brightness of a star
from the sum of the values of the pixels associated with
that star. In practice, it’s difficult to separate star pixels
from non-star pixels, but there is a simpler way known
as aperture photometry: Define a circular region that
contains the PSF of the star completely (the yellow cir-
cle in Fig. 14). At some small distance outside, define
an annular region (bounded by the two blue circles in
Fig. 14). Assuming that the central circle contains only
the star we are interested in, and the annular region no
discernible star at all, we can argue as follows: If we sum
up the pixel values within our central circle, we get the
light from the star plus background light. We can esti-
mate the background light as follows: On average, the
background brightness should be the same in the central
circle and in the surrounding annulus. In the annulus, we
can determine the average brightness by summing up the
pixel values in the annulus and then dividing by the num-
ber of pixels (equivalently, by the area of the annulus).
Multiply this average by the number of pixels in the cen-
tral circle (equivalently, by the area of the circle), and
the result will be the brightness contribution from the
background within the central circle. Subtract this con-

11

1

Fig. 14.— Aperture photometry in a part of the Hubble Space
Telescope image of Westerlund 2. Image credit: NASA, ESA,
the Hubble Heritage Team (STScI/AURA), A. Nota (ESA/STScI),
and the Westerlund 2 Science Team

tribution from the total sum of the pixel values within
the central circle, and what is left is a measure of the
brightness of the star. Note that photometric measure-
ments are sometimes made with the telescope slightly
out of focus, distributing the object’s light over a greater
number of detector pixels for greater accuracy.

In astronomical practice, stars are point-like objects.
For extended objects, we can measure a surface bright-
ness, given in brightness per angular area in the sky, and
we can measure how that brightness varies from location
to location. Such brightness maps contain information
about the amount of material we are seeing. The situa-
tion is more complicated when densities are so high that
some of the matter obscures our view of whatever matter
lies behind (that is, if the matter in question is “optically
thick”). In the simplest case, we can see all of the light
from the matter of, say, a nebula (the nebula is “opti-
cally thin”), and the brightness in a certain area of the
sky allows us to estimate how many atoms we are seeing
in that area — a column density since we cannot de-
duce the three-dimensional structure, only the number of
atoms within that column of the three-dimensional ob-
ject which gets projected to the sky-region in question.

Brightness measurements will only ever cover some
limited region of the electromagnetic spectrum. Some
of the limitation comes about by the kind of telescope
we use. An ordinary optical telescope will be able to
receive visible light, near-infrared light, and ultraviolet
light (which, for ground-based telescopes, is somewhat
pointless since almost all UV light is filtered out in the
Earth’s atmosphere). But its camera would not be able
to detect, say, mid-infrared light, let alone X-rays. In
practice, as we have already seen, astronomers voluntar-
ily restrict themselves to even narrower portions of the
spectrum, by using suitable filters. This allows for quan-
titative description of the colors of astronomical objects.
An object that is bright when viewed through a blue fil-
ter, but dim when viewed through a red filter, will be
blueish in color.

What we have called the brightness so far, summing up
pixel values in our image, is proportional to the number
of photons from a certain source (or a certain area of the
sky) entering our telescope during the exposure time.
Since the exposure time is the same for all the objects

in our image, the ratio of brightness values for two such
objects is equal to the ratio of the energy per unit time (in
the given filter band) we receive from those two objects.

Also, since in both case we are using the same tele-
scope, and hence the same collecting area, the ratio is
equal to the ratio of the energy per unit time per unit
area (again in the given filter band) for those objects, or
using the appropriate technical term: the ratio of their
fluxes.

Flux ratios are how astronomers traditionally compare
the apparent brightness of celestial objects — except
that, to ensure some degree of backwards-compatibility
with the naked-eye-based, 2000-year-old Ancient Greek
magnitude system (as one does), those ratios are mea-
sured on a logarithmic scale. Specifically, if F1 and F2

are the flux values for light we receive from two objects
1 and 2 in a specific filter band, then their apparent
magnitudes in that band are defined as

m1 −m2 = −2.5 · log

(
F1

F2

)
. (1)

A reference point for the magnitude system is chosen by
setting a value for the magnitude of a specific star in a
specific filter band; for instance, in the V filter band that
roughly corresponds to a green filter, the star Vega was
originally chosen as a zero point, although his modern
visual magnitude is mV = +0.03.

Note the minus sign — magnitude values are larger for
fainter stars. With the naked eye, under good conditions,
you can observe stars with magnitudes up to aboutmV =
6.5. For extended objects, we would need to document
the energy per unit time and unit collecting area that
reaches us from a given solid angle in the sky. There,
the intensity, as energy received per unit time per unit
area per unit solid angle is the appropriate descriptive
quantity.

Brightness, of course, can change. Different types of
variable stars, for instance, can be distinguished by the
shapes of their light curves, which document how their
brightness changes over time. The transit method for
detecting exoplanets also relies on light-curve measure-
ments.

Last but not least, images also contain spatial, 3D in-
formation about the objects under study. Typically, that
information is projected onto the sky — we do not see
the full three-dimensional structure of, say, a gas cloud;
instead, we have one particular fixed perspective on that
cloud. Interpreting what we see typically involves mod-
els for the physical, three-dimensional structure, whose
predictions can then be compared to what we actually
observe.

2.5. Spectra

On to a central kind of data set in astrophysics: spec-
tra! A spectrograph contains a dispersive element (or
even more than one), which splits the incoming light into
its rainbow colours or, in physics terminology, into its dif-
ferent wavelengths. Examples for the three basic types of
dispersive element an be seen in Fig. 15. Figure 16 shows
ceiling lamps, imaged through a dispersive grid, namely
through “spectral glasses” that can be used to demon-
strate dispersion effects. As you can see in the figure,
though, the spectral decomposition makes for a hodge-

12

Fig. 15.— The three basic types of dispersive element, from left
to right: transmission grating, prism, and reflective grating

Fig. 16.— Light sources, imaged through a dispersive element
(“spectral glasses”)

podge of effects. The coloured images of the lamps, each
corresponding to a spectral line, overlap, creating a mix
of spatial information and wavelength information that
is not easily disentangled. A common solution is shown

Fig. 17.— One of the light sources masked by a slit, and imaged
through the same dispersive element

in figure 17: introduce a slit mask, with the slit oriented
at right angles to the direction of spectral dispersion. If
you keep the slit small, the overlaps between the succes-
sive images of the slit will be small as well. In the case of
separate spectral emission lines, as in this example, you
can then see the lines clearly separated.

When you see the image of a spectrum that is a broad
colourful band (possibly with bright emission lines, or
dark absorption lines), you see a succession of such slit
images, each copy indicating the brightness at that par-
ticular wavelength. One such image can be seen in figure
18: a spectrum of sunlight reflected by the Moon, pro-
duced with a Baader DADOS spectrograph. The image

Fig. 18.— Spectrum of sunlight, reflected by the Moon

was taken for demonstration purposes with a consumer
digital camera, and thus shows colours — any profes-
sional image of a spectrum would, of course, be in black
and white; the colour carries no additional information,
as the position of a spectral feature along the horizontal
axis already defines its wavelength, and hence its colour.

The information contained in a spectrum is one-
dimensional — for each wavelength, we have a quantity
indicating how much light is emitted in that particular
wavelength region. Thus, it is natural to plot spectral
data as a curve. The top part of figure 19 shows an ar-
tificial color image of a Solar spectrum, complete with
dark Fraunhofer lines. The bottom plots the spectrum
as a curve, with wavelength plotted along the x axis and
relative flux on the y axis. The requisite data is taken
from IAG solar flux atlas7 The curve is quite complex,

510.0 512.5 515.0 517.5 520.0 522.5 525.0 527.5 530.0
Wavelength [nm]

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

Fl
ux

Fig. 19.— Solar spectrum as a curve (bottom) and the recon-
structed version of a slit spectrum image (top). Data from the
IAG Solar Flux Atlas, Reiners et al. 2016

with a forest of absorption lines — narrowly defined min-
ima — one next to the other. If we zoom in by plotting a

7 Reiners et al. 2016,
[http://adsabs.harvard.edu/abs/2016A&A...587A..65R].

http://adsabs.harvard.edu/abs/2016A&A...587A..65R

13

much smaller wavelength interval, as in figure 20, you can
see the the lines themselves have characteristic shapes.

515 516 517 518 519 520
Wavelength [nm]

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

Fl
ux

Fig. 20.— Narrow region from a solar spectrum. Data from the
IAG Solar Flux Atlas, Reiners et al. 2016

When working with raw data from spectra, certain re-
duction steps need to be taken. Some of those are simi-
lar to the reduction of image data: Flatfielding is again
needed to compensate for differing sensitivity of the in-
strument in different parts of the spectrum. This is more
difficult for a spectrum than for an image, since for a
true flat field, you would need a perfectly flat spectrum.
Instead, any well-known, preferably smooth calibration
spectrum can be used to deduce the varying sensitivity.
Dark frames again can be used to take into account that
the electronics of the detector will produce some spurious
brightness in the image, which needs to be subtracted.

Wavelength calibration is another necessity. After all,
the spectral spread has a specific meaning — light is sep-
arated according to wavelength (or frequency). In order
to map specific wavelengths to the direction along which
dispersion takes place, astronomers often employ specific
calibration lamps, which contain a gas or a mixture of
gases that produce a hopefully dense array of known
emission lines. For a simple amateur spectrograph, you
might use Neon for the purpose; at the professional level,
you might for instance find a mixture of Thorium, Ar-
gon, and Neon. Sometimes, the calibration lines will be
recorded separately; in other cases, they are recorded
concurrently with the astronomical observation to allow
for a direct comparison. A special case of the latter, un-
avoidable for ground-based telescopes, are telluric lines
— absorption lines created not in outer space, but by
light absorption in the Earth’s atmosphere. Such telluric
lines can be used for calibration, as well.

Image distortions can make spectral data reduction
particularly challenging. A particularly complex case
are Echelle spectrographs, where two kinds of spectral
dispersion are combined: A grating will, in fact, pro-
duce several different spectra, called “spectra of different
order”. Higher orders tend to overlap each other, but
the different overlapping partial spectra can be separated
by a second stage of dispersion in the direction orthog-
onal to the initial dispersion. The result are different
rows of partial spectra, allowing astronomers to capture
an entire high-resolution spectrum on a standard, two-
dimensional camera chip. The raw image of one such
Echelle spectrum, taken with the FEROS spectrograph
at the MPG/ESO 2.2-metre telescope at ESO’s La Silla
observatory, can be seen in Fig. 21. This is just a small

Fig. 21.— Region within a raw image of a spectrum of
the star HIP66974 and a calibration lamp, taken with ESO’s
FEROS spectrograph in June 2015 (Data set SAF+FEROS.2015-
06-13T23:16:46.772). Retrieved from ESO’s Science Archive on 24
April 2019

region, about 10%, of a much larger image. As you can
see, the horizontal, curved stripes always come in pairs:
the stripe on top is mostly white with some dark absorp-
tion lines (which increase lower in the image), while the
lower stripe consists of a fairly dense forest of emission
lines. The upper stripe of each pair is the science image,
in this case of the star HIP66974, a star with the same
spectral type (G2V) as the Sun and thus a fairly similar
spectrum.

The lower stripe in each instance is the calibration
lamp — hence the many emission lines, each marking
a well-known reference wavelength. Reducing this spec-
trum would mean to map the different stripes to their
proper wavelength regions (using the calibration lines),
unbending the curved image, and properly calibrating
the brightness over the different parts of the image.

Once the spectrum is reduced, or if one is working
with a reduced spectrum in the first place, the spectrum
as a whole and in particular the spectral lines contain
a wealth of information about the object in question.
Systematic Doppler shifts in the spectral lines indicate
whether or not the light source is moving towards us
or away from us. Doppler shifts that change periodi-
cally over time contain information about objects orbit-
ing each other, from double stars to exoplanets detected
by the radial velocity method. Simple data analysis in
these cases proceeds by fitting the individual spectral
lines, finding their central wavelength, and tracing the
changes of that wavelength over time.

The shape and relative depth of spectral lines of a star
contains information about the star’s metallicity, that is,
the fraction of elements heavier than Helium contained
in the star’s atmosphere, about the surface gravity and
about the effective temperature. Some specific spectral
lines corresponding to radioactive elements can be used
to reconstruct the age of stars, and have been used to
find the oldest stars in existence.

The simplest part of such an analysis is about identify-
ing the lines corresponding to specific chemical elements;
these lines show which elements are present in the star’s
atmosphere.

Some such lines are indicated in figure 19. In all of
these cases, analysis usually proceeds by creating spectra
based on suitable models and comparing those with the
actual observations, finding the best fit.

14

2.6. Data cubes

So far, we have talked about two-dimensional images
(where the two dimensions correspond to an area on the
night sky) and one-dimensional spectra (where the one
dimension corresponds to wavelengths). Data cubes are
the combination of this: We have a two-dimensional im-
age of the night sky, but at each pixel location, we have
not only a single brightness value, but instead a whole
spectrum.

With two plus one dimensions, we are effectively look-
ing not at a two-dimensional rectangle, but a three-
dimensional cube. A data cube does not contain all the
information reaching us from a certain region of the sky
at a certain time (polarisation information is missing),
but it comes impressively close.

One way of obtaining such a data cube is with Inte-
gral Field Spectroscopy — for instance: splitting an
image into comparatively large “pixels,” each of which is
channeled into a glas fibre which transmits its light to a
spectrograph, where the spectrum is then recorded.

Another natural way of recording such a data cube is in
interferometry, where the light from several telescopes is
combined in a coherent way, making use of the wave na-
ture of light. In reconstructing images from interferomet-
ric measurements, one can distinguish (to a certain de-
gree) between contributions with different wavelengths;
in effect, this allows for the reconstruction of a three-
dimensional data cube.

Human beings are not equipped for really three-
dimensional vision. What we call three-dimensional vi-
sion is really just seeing surfaces within (sparsely popu-
lated) three-dimensional space. We cannot see all the
points within a three-dimensional data cube at once.
Fig. 22 shows one solution: showing separate images for

1.41630 GHz 1.41633 GHz 1.41635 GHz 1.41637 GHz

1.41640 GHz 1.41642 GHz 1.41645 GHz 1.41647 GHz

1.41650 GHz 1.41652 GHz 1.41655 GHz 1.41657 GHz

1.41659 GHz 1.41662 GHz 1.41664 GHz 1.41667 GHz

Fig. 22.— 16 of the 72 channels recorded for the galaxy
NGC 3198, from the THINGS survey (Walter et al. 2008),
[http://www.mpia.de/THINGS/]

different regions within the spectrum. In this particular

case, the “channel map” shows 16 of the 72 frequency
bins around the 21 cm hydrogen line that is character-
istic for atomic hydrogen (that is, hydrogen atoms; not
bound into hydrogen molecules, not ionized to form a
plasma, just simple atoms).

One of the most interesting applications of data cube
data is to extract the information they contain about
the large-scale motion of matter. Fig. 22 shows 21 cm
radiation emitted by hydrogen atoms, but some of that
radiation is shifted to lower and some to higher frequen-
cies — why? Because some of the atoms are moving to-
wards us, others away from us, and their 21 cm radiation
undergoes a corresponding Doppler shift.

The data cube contains information on the radial ve-
locity of the gas we see in the different frequency chan-
nels. We can combine that information to make a color
picture whose color encodes the average radial velocity
of gas in each region of the image, giving what is called
a first moment map. That picture is shown in Fig. 23.
Reddish regions are moving away from us, blueish re-

200 300 400 500 600 700 800
200

300

400

500

600

700

800

Fig. 23.— Velocity map for the galaxy NGC 3198,
from the THINGS survey (Walter et al. 2008),
[http://www.mpia.de/THINGS/]

gions towards us. The combined picture is that of a disk
galaxy whose stars are rotating as a whole, one side of
the disk coming towards us and the other moving away
from us in that coordinated motion.

Alternatively, instead of taking the average, we could
compute the standard deviation of the velocity values as-
sociated with each pixel. That would give us an estimate
not of the bulge motion of gas in that region, but of the
diversity of motion, the spread of radial velocities.

In a similar manner, we can use data cube informa-
tion to map all those quantities that can be derived from
spectra — the presence of specific elements and thus the
chemical composition, on larger scales the prevalence of
different kinds of stars, and more.

https://ui.adsabs.harvard.edu/abs/2008AJ....136.2563W/abstract
http://www.mpia.de/THINGS/
https://ui.adsabs.harvard.edu/abs/2008AJ....136.2563W/abstract
http://www.mpia.de/THINGS/

15

2.7. High-level data: catalogues and tables

Once astronomers have derived observational or physi-
cal quantities from their observations and measurements
— deduced the temperature of stars from their spec-
tra, or their luminosity from their apparent brightness
and some measure of their distance — they can compile
catalogues containing such higher-level, derived physical
information. Analysing this kind of high-level data is
broadly similar to statistical analysis in other fields, and
uses the same general tools.

To begin with, a catalogue is no more than a list. Con-
ventionally, each row in that list represents a separate
object, and each column represents a property. If you
just look at the numbers in a big list, you are sure to
miss the forest for the trees. In order to extract trends,
distribution, systematic correlations, functional relation-
ships from the data, in astronomy: in order to under-
stand what physical laws and evolutionary pathways has
made objects the way they are, we need employ proper
tools. Statistical analysis is a wide field, and in this ba-
sic introduction, we will only look at the most basic of
descriptive tools.

A very basic tool is a histogram, which allows us to
see the distribution of values for a single quantity within
our sample (e.g. among the objects of our catalogue).
The basic principle is simple: within the range xmin ≤
x ≤ xmax spanned by the values for the quantity x, we
define N bins of equal size, each with a lower boundary
xi and an upper boundary xi+1. A value x falls into the
bin with index i if xi < x ≤ xi+1. We then draw the
bins as rectangles, whose height is proportional to the
number of values which fell into the bin. This gives us a
measure of how prevalent (or not) specific values are.

Histograms can also be logarithmic. In that case, we
divide the range of the quantity we intend to map into
bins of equal logarithmic size. For instance, if one bin
contains stars that are between 1 = 100 times and 10 =
101 times as luminous as the Sun, the next bin would be
from 101 to 102 solar luminosities L�, and the following
one from 102 to 103L�. Those bins are of equal size when
it comes to their exponents. Such logarithmic binning is
useful for physical properties that are spread across a
wide spectrum of scales.

Here is a simple example for a histogram with loga-
rithmic bins. Fig. 24 shows the basic preparations for
manually drawing a histogram: a tally sheet for putting
the stars in a certain data set into their proper bins. The
visual appearance of the tally sheet already constitutes
a simple histogram-like representation, although in an
unusual sideways orientation. Hand-crafted histograms
have gone the way of so many other hand-crafted things.
The automatically-generated version for the same his-
togram can be seen in Fig. 25. We will look at ways of
generating such histograms in sections 4.7 (TOPCAT)
and 8.7 (Python).

The data set is DEBCat,8 a collection of more than a
hundred well-studied transiting double stars. In that par-
ticular set-up, astronomers have sufficient information to
be able to reconstruct the stars key physical properties
like mass, radius, luminosity and temperature, and de-

8 Southworth 2014, [https://arxiv.org/abs/1411.1219]. The
data and supplemental information are available online at
[http://www.astro.keele.ac.uk/jkt/debcat/].

10−3 to 3 · 10−3 L� 0

3 · 10−3 to 10−2 L� ::: 3

10−2 to 3 · 10−2 L� ;; 10

3 · 10−2 to 10−1 L� ;;::: 13

10−1 to 3 · 10−1 L� ;;:: 12

3 · 10−1 to 100 L� ;;;;;: 26

100 to 3 · 100 L� ;;;;;;;;;;;; 60

3 · 100 to 101 L� ;;;;;;;;;;; 55

101 to 3 · 101 L� ;;;;;;;;:::: 44

3 · 101 to 102 L� ;;;;;;:::: 34

102 to 3 · 102 L� ;; 10

3 · 102 to 103 L� ;;;::: 18

103 to 3 · 103 L� ;;: 11

3 · 103 to 104 L� ;: 6

104 to 3 · 104 L� ; 5

3 · 104 to 105 L� ;: 6

105 to 3 · 105 L� ::: 3

3 · 105 to 106 L� 0

Fig. 24.— Tally sheet in preparation for a hand-crafted histogram

10 2 100 102 104 106

Luminosity in L

0

10

20

30

40

50

60

Fig. 25.— Automatically-generated histogram

rive properties such as a star’s average density.
Let us use some of those properties to look at another

very common tools are diagrams populated with data
points in which we plot one quantity against another.
Each axis stands for a specific physical quantity (com-
monly scaled either linearly or logarithmically), and each
data point corresponds to a pair of values, one for each
of the axis quantities.

A famous example, with two logarithmically scaled
axes, is the Hertzsprung-Russell diagram, a version of
which is shown in Fig. 26. The values corresponding to
each data point are read off in the usual way, as shown
by the two grey auxiliary lines: from the dot, go horizon-
tally to the vertical axis; read off the value indicated at
the intersection point, in this case a luminosity of about
5 · 104 L� and a temperature of somewhat more than
20 000 K.

In the diagram, you can clearly discern a linear struc-
ture going from bottom left to top right, and a cloud of
dots hovering to the upper left of that linear structure.
Astronomers call the linear structure the main sequence,
and the stars in it the main sequence stars.

There is a way of include additional information in
histograms and 2-dimensional diagrams: use colour! In
the simplest case, we can use colour to distinguish be-

https://arxiv.org/abs/1411.1219
http://www.astro.keele.ac.uk/jkt/debcat/

16

103 104

Temperature in K

10 1

101

103

105

Lu
m

in
os

ity
 in

 L

Fig. 26.— Hertzsprung-Russell diagram using physical quanti-
ties (temperature and luminosity) instead of spectral classes and
luminosity classes. Data from DEBCat

tween different populations of data points. For instance,
let us colour the points in the upper-left cloud on the
Hertzsprung-Russell diagram red, as Fig. 27. So far, the

103 104

Temperature in K

10 1

101

103

105

Lu
m

in
os

ity
 in

 L

Fig. 27.— Hertzsprung-Russell diagram using physical quanti-
ties (temperature and luminosity) instead of spectral classes and
luminosity classes. Data from DEBCat

colouring hasn’t brought us any great advantage. The
cloud was apart from the rest before, and it is apart from
the rest now. But let us carry this color scheme over to a
histogram, for instance, plotting histograms for the red
and the blue dots side by side, using the same bins. The
result for a histogram of radii is shown in Fig. 28. Now

10 1 100 101 102

Radius in R

0

20

40

60

80

Fig. 28.— Separate histograms for the blue and red data points
from Fig. HRDiagramRedBlue

we see that the stars corresponding to those red dots

have considerably larger radii than their main sequence
counter parts. The size distributions are clearly sepa-
rate. Those red-dot stars are veritable giants! We know
from the Hertzsprung-Russell diagram that their temper-
atures are somewhere between 4000 and 6000 K, going
from reddish to yellowish. So these red giant stars were
named with excellent reason.

Let’s look at a diagram plotting, say, radius against
density, as in Fig. 29. In that diagram, it is not clear

100 101

Radius in R

10 5

10 4

10 3

10 2

10 1

100

M
ea

n
de

ns
ity

 in

Fig. 29.— Plotting radius against density, both in solar units.
Data from DEBCat

which are the main sequence stars and which are the
red giants. With the red-blue distinction, the situation
becomes clear, as shown in Fig. 30. Red giants are not

100 101

Radius in R

10 5

10 4

10 3

10 2

10 1

100

M
ea

n
de

ns
ity

 in

Fig. 30.— Plotting radius against density, both in solar units.
Color marks red giants vs. main sequence stars. Data from DEB-
Cat

only generally larger in radius than main sequence stars,
they are also considerably less dense. Our data points us
in the right direction: in the modern view, main sequence
stars go through a red giant phase after they exhausted
the hydrogen fusion fuel in their cores, their atmospheres
swelling up and cooling down in the process, leading to a
large, reddish star with drastically reduced mean density.

We can use colour more quantitatively than just to ex-
press class membership in a two-colour scheme. Colour
can add an (imperfect) third dimension to our diagrams.
In the version of a mass-luminosity diagram shown in
Fig. 31, each data point has the proper star color cor-
responding to it’s temperature (as determined from the
star’s spectral properties9). This color-coding immedi-

9 Information about this kind of color mapping can be found on
http://www.vendian.org/mncharity/dir3/starcolor/

http://www.vendian.org/mncharity/dir3/starcolor/

17

ately allows you to identify the red giants, see that their
mass range is a subset of the mass range of the main se-
quence stars, but that the red giants are larger and more
reddish. Color scales can also be artificial, and different

10 1 100 101

Mass in M

10 2

100

102

104

Lu
m

in
os

ity
 in

 L

Fig. 31.— Mass-luminosity diagram with data points plotted
in the color corresponding to a star’s temperature. Data from
DEBCat

color maps are available for the purpose. In Fig. 32, the
color now indicates the radius of each star, with the scale
shown by the colorbar on the right. Clearly, stellar radii

10 1 100 101

Mass in M

10 2

100

102

104

Lu
m

in
os

ity
 in

 L

100

101

Ra
di

us
 in

 R

Fig. 32.— Mass-luminosity diagram with data points plotted
using an artificial color map that indicates the stars’ radii. Data
from DEBCat

grow along the main sequence, but the red giants, in their
little cloud of data points above the main sequence, are
larger still.

A good color map can make your diagram much easier
to understand; a bad one can be confusing. Also, you
should take into account accessibility issues. Your color
maps should be accessible even to people with certain
forms of colour-blindness.10 Unless you are plotting a
spectrum, avoid the rainbow colour map. Instead, con-
sider color maps that have been designed to be accessible
for those with colour blindness, as well as to print well
in black and white — for instance the Viridis family of
colour maps.

Patterns in such diagrams indicate interesting relation-
ships. Is there a linear relation — do data points for cer-
tain physical quantities fall on a straight line in a linear
diagram? Or is there a power law at work, y ∼ xa, in
which case the data points would fall on a straight line
in a log-log diagram? In this way, diagrams can help us
find systematic relations between our data.

10 Some information on this kind of accessibility can be
found on [https://betterfigures.org/2015/06/23/picking-a-colour-
scale-for-scientific-graphics/]

This is not as straightforward as it sounds, of course.
In a two-dimensional diagram, we can plot at most three
different quantities (if we make clever use of a color map).
We could try all different pairs of physical quantities rel-
evant for the situation we are looking at, and might get
lucky in finding interesting relationships in that way. A
three-dimensional diagram is possible, but would need to
be interactive so we can view it from all different sides
to get a feeling for the three-dimensional structures. Of
course, the basic physical quantities can be combined to
yield compound quantities. Complex relationships be-
tween quantities, longer polynomials involving several
quantities for instance, or differential/integral relations,
are much less straightforward to read off such diagrams.

The typical way of extracting information about sys-
tematic relationships from data is to fit a function to
the data. Assume that we have data points (xi, yi) for
i = 1, . . . , N , each representing a pair of quantities. A
common measure for how well those data points satisfy
a general relationship y = f(x) is as follows.

If the relationship were to hold perfectly, then we would
have yi = f(xi). In real life, functional relationships are
not that perfect. Even in cases where the relationship
y = f(x) is the basis for our set of data points, mea-
surement errors will lead to deviations. Moreover, ex-
act relationships are rare; the much more common case
is that the relationship is approximate, and that data
points scatter around the curve y = f(x).

For a single data point, the quantity

∆yi = yi − f(xi) (2)

is a measure of the deviation of the data point from the
relationship. What is the best way of summarising the
deviations for our data set as a whole? We can say what
is definitely not a good measure: taking the sum of all
the ∆yi, since deviations may be positive and negative,
and the sizeable deviations associated with different data
points could cancel each other out, skewing the result —
we could even get an overall measure of zero, indicating
no deviation, in a situation where the ∆yi are huge, but
cancel pair-wise!

To avoid this, we could take the sum of the absolute
values |∆yi| but as we shall see later on, it is useful for
the measure we choose to be differentiable. That why a
better choice is the sum over the squares of the devia-
tions,

S ≡
N∑
i=1

[yi − f(xi)]
2. (3)

Commonly, we have an idea for the basic properties of
the function f(x), but not about the explicit form of the
function. For instance, we might have reason to believe
the function to be linear (since that is what an x-y di-
agram suggests), f(x) = ax + b, but do not know the
values for a and b.

In such a case, we can use the quantity (3) to find the
best fit. Let us make explicit that the function depends
on the parameters a, b, namely as f(x, a, b) = ax+ b. For
our set of data points and for any given pair of values
a, b, we have

S(a, b) ≡
N∑
i=1

[yi − f(xi, a, b)]
2. (4)

https://betterfigures.org/2015/06/23/picking-a-colour-scale-for-scientific-graphics/
https://betterfigures.org/2015/06/23/picking-a-colour-scale-for-scientific-graphics/

18

Fitting the function to the data involves minimising
S(a, b); since the expression in question is the sum of
the squares of the deviations, this is known as the least-
squares method. For linear functions, there is even an
analytic solution: At the minimum of S(a, b) as a func-
tion of a, the derivative of S(a, b) with respect to a must
be zero (this is why it was useful to choose S(a, b) to
be readily differentiable). The same goes for b; impose
both of those conditions, and you can find a and b di-
rectly. In the general case, no such analytical solutions
are possible, and the best fit is found numerically.

There are a number of ways to go from here, some more
advanced, some less. In fitting a function to data points,
you can give different weight to different contributions
to (4) with the measurement errors for each data point;
in this way, those data points that are less-well known
will also contribute less to the choice of parameters.

Then, there is the problem of outliers, that is, lonely
data points that are far from the rest, and probably
not because of their physical properties but because
of measurement errors. Astronomers also make use of
Bayesian techniques in order to estimate the param-
eter values best fitted to their model, or to compare dif-
ferent models with each other. All of these issues are
beyond the scope of at least this version of my basic in-
troduction.11

The problem of making sense of multidimensional data
is of interest far beyond astronomy, and a main task of
what has become known as data science. Astronomers
apply numerous tools that have much more general ap-
plication in order to solve their data science problems.

For astronomers, this is not a matter of merely apply-
ing well-established methods and tools to new data sets.
Instead, the way that astronomers look at their data,
and make their deductions, is continually evolving. It is
certainly more common for astronomers to derive new
results by utilizing new data, but it is equally possible
to make new deductions from an existing data set, by
applying new methods.

As an example of a comparatively recent development,
machine learning has begun to play a role within as-
tronomy. Machine learning comprises a certain subset
of algorithms that can be used to find pattern in data,
often involving a training phase during which the soft-
ware learns about classifying certain kinds of data before
moving on to new classifications.12

After this general overview, let us consider astronom-
ical data sets, and explore ways of viewing or analyzing
them. We start with astronomical images, and a simple
application software for viewing them.

3. SAOIMAGE DS9 AND ASTRONOMICAL
IMAGES

When astronomy is in the public eye, a large por-
tion of the attention goes to spectacular astronomical
images. In this section, we will take a closer look at
the scientific versions of such images. The application
software we will use in this section is called SAOImage
DS9. It was developed at the Smithsonian Astrophysical

11 Some additional information can be found in the classic paper
by Hogg, Bovy and Lang 2010, [https://arxiv.org/abs/1008.4686].

12 Some information can be found in Ntampaka et al. 2019
[https://arxiv.org/abs/1902.10159].

Observatory (SAO) and is available for download from
[http://ds9.si.edu/]. When you start DS9, it will look
as in Fig. 33. Top left, there are fields with informa-

Fig. 33.— The initial screen of DS9 right after the software has
started

tion about the image(s); top right, two small windows
we will talk about later. Below, there is a horizontal
menu with two rows. I will call the top row the “main
menu.” Whenever you click on a field in the top row, the
bottom row will display a set of associated commands. I
will call this bottom row the “secondary menu”. Below
the secondary menu is the main image window, with a
color bar (currently greyscale) below that. There is also
a horizontal menu on top — on a Mac at the top of the
screen, on Windows or on Linux at the top of the win-
dow. I will call this the “top menu.” This is mostly a
duplicate of the menu with the two rows within the win-
dow, but it does provide some additional options, and
will occasionally be needed. Should operating systems
change in the future, the menu placement may change as
well, but currently, the positioning is as I have described.
If DS9 opens additional windows, those can come with
their own top menu, different from that of the main win-
dow. Details of what the menu items are called might
vary slightly from version to version; I have used version
7.5.

3.1. Loading a Hubble image

Let’s load an astronomical image file. We get our file
from the Hubble legacy archive at the Space Tele-
scope Science Institute (STScI) in Baltimore, which op-
erates the Hubble Space Telescopes and other space tele-
scopes. The legacy archive is where all the older Hub-
ble images are stored. It can be found at the URL
[https://hla.stsci.edu/hlaview.html]. There is a helpful
search field. Let’s search for M 16, the Eagle Nebula, by
entering “M16” in the search field and pressing “Search”.

You should get a very wide result screen, the leftmost

https://arxiv.org/abs/1008.4686
https://arxiv.org/abs/1902.10159
http://ds9.si.edu/
https://hla.stsci.edu/hlaview.html

19

bit of which is shown in Fig. 34. You will probably need

Fig. 34.— Search results from the Hubble Legacy Archive

to scroll right to see the columns 13 and 14 we are in-
terested in. In column 14, called “Dataset”, look for the
data set names

• hst 05773 05 wfpc2 f502n wf

• hst 05773 05 wfpc2 f656n wf

• hst 05773 05 wfpc2 f673n wf

At the time of this writing, it is fairly easy to find these
images. If you don’t, you can try something different: In
the search field on [https://hla.stsci.edu/hlaview.html],
click on “Advanced search”. In the main field, enter
“M16”, and in the proposal ID field, enter “05773”. The
result will be a much shorter list, including the images
listed above. Even in the far future, when the interface
might have changed, searching for the proposal ID in
addition to the object name should return a list that
includes those images — even future archives should be
“legacy-proof.”

The images in question were all taken on April 1, 1995,
and belong to one of the most iconic Hubble images: the
pillars of creation. Each file should be around 53 MB
in size. You can download the files by either clicking
the little shopping cart icon for each image and then
going to the shopping cart tab, or by right clicking on
the shopping cart icon and choosing “save link as”.

If you know astronomical abbreviations, you will be
able to make some initial sense out of these dataset
names: hst, for instance is bound to mean that we
are downloading data from the Hubble Space Telescope.
WFPC2 is the “Wide-Field and Planetary Camera 2”
on that telescope, wf says that we are downloading the
wide-field camera images. f502, f656 and f673 denote dif-
ferent filters which have been placed before the camera
for these respective images. We will combine the three
images into a colour image — but it is going to be a false-
color images, since those three filters do not correspond
to red, green, and blue!

Last but not least, when you have downloaded the im-
ages, you will notice that the filename extension indicates
that these are FITS files, in the most common format
used for scientific images in astronomy; the filename ex-
tension is either “fits” or possibly if you are on an older
Windows machine, “fit”.

3.2. A first look at the Eagle Nebula M16

Now that we have the files safely stored away, we can
open them using DS9. To this end, go to the main menu
row and click on “file” (which is probably highlighted to
begin with); from the secondary menu that appears di-
rectly below, choose “open”. In the usual pop-up choose-
a-file window, I’ll choose the first of the Hubble files we
downloaded, hst 05773 05 wfpc2 f502n wf drz.fits. Once
the file is open, the DS9 window should look as in Fig. 35.

Fig. 35.— Opening an HST Eagle Nebula image in DS9

The image is disappointingly black. We need to find
a better brightness scale to see what is going on. Astro-
nomical images typically capture an amazing dynamic
range, that is, an amazing range of different brightness
values for each pixel (concretely, 65536 different bright-
ness values per pixel, compared with the 256 of a typical
RGB pixel). Displaying such an image on a computer
monitor, or printing it, can never do this range full jus-
tice. Instead, we need to pick and choose — which part
of the brightness range do we want to display, and which
way of compressing the brightness scale shows us the
most information about the image?

There is no single right way of doing this, and there
is no standard way that will guarantee the best results
for all possible astronomical pictures. Instead, this is a
matter of combining experience (your own and that of
others!) with some experimentation to arrive at a result
that works for you. You should always be aware that
such a result is not a naked view of the astronomical data
— what you see is determined both by the astronomical

https://hla.stsci.edu/hlaview.html

20

data and by the choices you have made in displaying that
data. (Also note that these display options do not change
the image itself; the image file itself is unchanged, and
you are only changing the way you are viewing the data.)

To experiment a bit, go to the main menu and choose
“scale”. From the secondary menu that will come up,
choose “zscale”. Where previously (in “minmax” mode)
the image had been displayed with the minimum pixel
brightness set to black, and the maximum pixel bright-
ness to white, the colors are now mapped to values closer
to the median pixel brightness. As a result, your image
should look something like this in Fig. 36. This still looks

Fig. 36.— HST Eagle nebula image in DS9 with zscale applied

fairly raw, and rather different from the pretty astron-
omy pictures you see in the media. But at least we can
discern some structures. The main window below the
two rows of menus only shows part of the image. In the
overview window (second to right, on top) you can see
the whole of the image. The cyan frame in the overview
window marks the part of the image that is visible in the
main window. Drag it around (left-click the mouse and
drag) to explore other parts of the image. Alternatively,
you can go to “zoom” in the main menu and choose one
of the options in the secondary menu to see the image as
a whole (“zoom fit”), or in more detail (e.g. “zoom 2”).

In the “scale” menu, you can also choose another com-
pression method instead of linear — see how it affects
the view! (Again, the image itself is not changed by your
choice.) Also, instead of the grayscale display, you can
go to the main menu point “color” and select another
color map.

3.3. Coordinates: Navigating the image

When your cursor is on the main image, what you will
see will be something like in Fig. 37. In this image, the
tip of the cursor is placed on a star. The detailed image
(inset image top right) shows the star’s little disk, with
DS9’s own representation of the cursor on top. Let us

Fig. 37.— HST Eagle nebula image with cursor on a star

take a closer look at the information on the top left.
“File” is simply the file name. If the header identifies
the object by name in a suitable way, that is what would
be displayed in “Object.” The “Value” field gives you
the value of that particular pixel.

Below, we have the sky position information for the
cursor, given in the “World Coordinate System” (WCS).
“fk5” tells you that the sky coordinate system is de-
fined using the reference stars of the Fifth Fundamen-
tal Catalogue (Fundamentalkatalog 5), which was pub-
lished in 1988 by Astronomisches Recheninstitut Heidel-
berg (ARI, now a part of Heidelberg University). The
coordinates themselves are those of the equatorial sys-
tem, which is analogous to latitude and longitude on
Earth: longitude corresponds to the right ascension α
(sometimes abbreviated to RA, ra, or R.A.), latitude cor-
responds to the declination δ (sometimes abbreviated to
Dec, dec, or DE).

Both RA and Dec are given here in the standard sex-
agesimal notation. Right ascension is given in hours (in
hour example: 18), minutes (18) and seconds (50.2864),
written as 18:18:50.2864. (In other contexts, it might
be written as 18h 18m 50s.2864, but the meaning is al-
ways the same: Each object lies on a particular meridian
(that is, on part of a great circle through the two poles
of the coordinate system). The value of the right ascen-
sion indicates where that meridian intersects the celestial
equator, measured eastwards along the celestial equator,
starting from the vernal point — the point where the
Sun crosses the celestial equator northwards, at the time
of the vernal equinox (at or around March 20 each year).
For this measurement, 24 hours correspond to the full
circle. The integer hour value is followed by the number
of full minutes, with 60 minutes in a full hour, as ex-
pected; the third position gives the seconds, again with
60 seconds in a minute.

Declination is given in degrees northwards (positive

21

sign) or southwards (negative sign) from the celestial
equator, which itself is at δ = 0◦. In the image, the no-
tation is again sexagesimal, with a southward (because
of the minus sign) 13 degrees, 50 arc minutes and 2.975
arc seconds written as 13:50:2.975. (In another context,
you might see this written as 13◦50′2′′.975.)

If you go to “WCS” in the top menu, you can change
the notation from sexagesimal to degrees; the latter will
show both right ascension and declination as a decimal
number denoting degrees, in our example 274.7095 for
the right ascension, and −13.9341 for the declination (in
both cases with a few more significant digits).

Just like in the usual geographical coordinate system,
a difference of one degree in declination corresponds to
the same length, wherever we are on the celestial sphere,
just like a difference of one degree in latitude does. Dif-
ferences in right ascension, on the other hand, correspond
to smaller angular distances the closer you go to the ce-
lestial poles, analogous to what happens with geographic
longitude. If you want to move the cursor around a bit to
estimate the angular scale of your image (how many pix-
els corresponding to, say, 10 arc seconds), use declination
for the purpose, not right ascension.

The ”Image” coordinates below denote the X and Y
coordinate of a pixel within the given image. In a FITS
file, the pixel in the bottom left corner has the coordinate
(1, 1). If you zoom in, you will see that DS9 assigns this
coordinate value to the center of the pixel. The lower left
corner of the lower left corner has the pixel coordinates
(0.5, 0.5). In our example the “Physical” coordinate is
the same as the image coordinate. If the image you are
looking at is only a part of a larger image, you are likely
to find the physical and the image coordinates differ: The
physical coordinates would still be those of the original
image, (1, 1) the coordinates of the bottom left pixel of
the CDD camera. The image coordinates would be those
of the smaller image, (1, 1) the coordinates of its bottom
left pixel.

How does DS9 know which sky coordinates to map to
the pixel coordinates? That (meta-)information is con-
tained in a special part of any FITS file: the header.

3.4. Meta-Information: the FITS header

Astronomical images can only be interpreted correctly
if you know the conditions under which they were pro-
duced. What filter was used? How long was the image
exposed? When and where was it taken? FITS files in-
clude this meta-information in a dedicated section called
the header. We can inspect the FITS header of our im-
age by going on “file” in the main menu, and choosing
“header”.

Once you do this, you are given two choices; the sec-
ond one is the file name with [SCI] appended. Start by
looking at the first header, which looks like in Fig. 38.
You don’t need to understand this in detail (I certainly
don’t!), but some bits are fairly clear: among other
things, the header lists the file name convention, tele-
scope and instrument name, date when this was pro-
cessed, and the filter F502N that was used to take the im-
age. Information is encoded in a two-part way: each par-
ticular chunk of information has a keyword (here shown
in blue, on the left) and an assigned value. The two are
linked by the equal sign. Often, this is followed by a
slash, after which there is a comment with a description

Fig. 38.— First header of the HST Eagle nebula image

of the keyword’s meaning.
If you scroll down, you can find different kinds of in-

formation: the position of the Sun at the moment of ob-
servation is encoded there, the angle between the Moon’s
position and the pointing direction of the telescope, the
observation start time and end time. Some of those key-
words are specific to the telescope, instrument, organiza-
tion or project in question. Others are more general.
Under EXPTIME, you will commonly find the expo-
sure time in seconds, and under DATE-OBS the date
of the start of the observation in year–month–day for-
mat. TIME-OBS gives the time of the start of the ob-
servations; the time zone is Universal Time (UT). The
multiple lines marked HISTORY typically contain infor-
mation about how the image has already been processed,
which files were used as flatfield or dark frame, and which
software was used for the processing.

The [SCI] version is more image-specific, as you can
see in Fig. 39. It gives you lots of details about the
instrument and telescope properties during these partic-
ular observations, and important information about the
context of the data. Here, too, some keywords will be
specific to the project in question, and others more uni-
versal. NAXIS will tell you the number of axes you are
dealing with, in this case two of them. NAXIS1 and
NAXIS2 will give you the width and height of the image,
in pixels. BUNIT will give you the units of the pixel val-
ues. In this case, it is a generic “COUNTS/S”, counts
per second, in other cases it might be Jansky per beam
or similar units.

The CRVAL1, CRVAL2, CRPIX1, CRPIX2 and the
CD1 1, CD1 2, CD2 1 and CD2 2 contain the informa-
tion that allows you to calculate, for each pixel, the val-

22

Fig. 39.— Second header of the HST Eagle nebula image

ues of the two equatorial coordinates: right ascension
and declination. The CD values correspond to a ma-
trix mapping the two coordinate systems to each other.
Often, the axes of the WCS and the image coordinate
systems are parallel to each other. (You can check this
in the overview window in the upper right corner, sec-
ond from the right, where the North and East directions
are shown as N and E, and the image coordinate direc-
tions as X and Y.) In that case, CD1 2 and CD2 1 are
zero, and for the usual square pixels, CD1 1 and CD2 2
are equal (up to a sign) and denote the image scale. In
our case, CD2 2 = 2.777777777777778E-05 denotes the
degrees that correspond to the width of a single pixel;
2.7 · 10−5 degrees per pixel corresponds to 0.1 arc sec-
onds per pixel. CD1 1 has an extra minus sign because
the X direction and the East direction are anti-parallel
in this image.

3.5. Making a colour image

As a nod towards pretty astronomical pictures, let us
combine partial images into an RGB color image. Recall
from section 2.1 that astronomical cameras take black-
and-white images, each through a previously chosen filter
(or, in some cases, no filter at all). These different filter
images can be combined afterwards to produce an RGB
color image.

In most cases, the result will be a false-color image,
however, since the astronomical filters used will not cor-
respond to the proper red, green and blue filters. So let’s
make a color image! Since we have played with various
switches in DS9, we should reset; the easiest way is to
quit and restart the software.

Once DS9 is up and running again, create a color frame

by clicking “frame” in the main menu, and then “rgb”
in the secondary menu. A little extra menu will pop up,
which can be seen in Fig. 40.

Fig. 40.— The RGB popup menu

With the “red” option checked, go to “file” in the
main menu and “open” in the submenu and load
hst 05773 05 wfpc2 f673n wf drz.fits. Next, check green
and load hst 05773 05 wfpc2 f656n wf drz.fits. You
should already see a superposition of the red and
green parts at this stage. Finally, check blue and
load hst 05773 05 wfpc2 f502n wf drz.fits. There is your
composite color image, but it’s looking rather dark.

With the small RGB menu window active, go to the
top menu (at the top of your screen on a Mac, and at
the top of your window frame in Windows). Under the
top menu point “Lock”, choose “scale”. That way, when
you change the scale, the change will affect all the three
images equally.

By setting the scale to “sqrt” (a form of compression)
and the scale limits to 99% (only possible under “scale”
in the top menu) I get an image that’s pretty close to the
usual appearance of the pillars of creation, cf. Fig. 41.
The Hubble Space Telescope images you can find in the

Fig. 41.— Colour image of the “pillars of creation” with DS9

media have had significant extra work applied to them,
up to and including a person going over the image region
by region, removing remaining impurities by hand, and
cleaning up the boundaries.

23

3.6. Catalogs

In the end, we’re not here for the pretty pictures. We’re
here for the science. And since today’s science builds
upon what was done before, we will look at ways o access-
ing the information that is already out there about the
region whose image we are looking at. We will work with
an image from data release 9 (DR9) of the Sloan Digi-
tal Sky Survey (SDSS). The original SDSS was the first
large-scale digital survey, a pioneering project that pro-
vided astronomers with large amounts of data that was
of consistently high quality. Were, before, astronomers
had counted themselves lucky if they could do a statis-
tical analysis with a few hundred galaxies, the original
SDSS gave them data on more than 900.000! The DR9
is part of the third incarnation of the survey, SDSS-III.

I have chosen an image fairly randomly by going to
https://dr9.sdss.org/fields/ and entering the RA 20.0
and the Dec 20.0 in the “Search by Object Coordinates”
and hitting “Submit”. On the results page, click on the
link “g-band FITS” to download the file shot through
the SDSS g filter. Unzip the file to obtain the unadorned
FITS file named “frame-g-007923-5-0307.fits” which is
12.4 MB in size. Open that image with DS9. In order to
look at the image, choose a linear zscale.

Fig. 42.— Zoomed-out version of our SDSS image, with SDSS
DR9 catalog stars circled in green

For an image with accurate positioning data (con-
tained, as we have seen, in the FITS header), DS9 can
show the positions of the known stars. To display them,
go to the main window’s top menu. From the dropdown
menu “Analysis,” go to the “Catalogues” dropdown sub-
menu, from there to “Optical” and there, choose “SDSS
Release 9,” which is the catalog associated with the im-
age’s data release. If you zoom out sufficiently far, your
main image will look as in Fig. 42. The image, and the
surrounding area, are covered in small green circles, and
each circle marks a star (or possibly other object) that
is listed in the SDSS DR9 catalogue.

At the same time, DS9 opens up a catalog window,
as shown in Fig. 43. Near the bottom of this window

Fig. 43.— Catalog window for the SDSS DR9 stars within our
window

is a list of objects. Each object corresponds to one of
the green circles in the image. Use the scroll bar to look
at the list’s different columns, and you will see that, in
addition to the object’s position (RA and Dec), there is
information about the object’s brightness: the different
apparent magnitudes, as measured using the SDSS filter
set ugriz, corresponding to specific filters centered in the
near-UV (u filter, magnitude is given in the umag col-
umn), the blue-green part of the spectrum (gmag), the
red region (rmag), the border region between red and
near-infrared (imag) and an infrared filter beyond that
(zmag).

If you click on a line in that table, corresponding to the
entry for a specific object, the object’s marker circle will
blink red a few times in the main window, and centre the
view on that object In that way, you can zoom in on spe-
cific objects and have a closer look at them. Conversely,
if the main window is active and you go to “Edit” in the
top menu and, in that submenu, choose “Catalog”, then
you can click on any of the little catalog marker circles
in the image, and in the catalog window, the correspond-
ing row will be visible and highlighted. (Choose “None”
in the “Edit” dropdown menu to go back to the normal
editing mode.)

The filter field in the catalog window allows you to filter
out those parts of the catalog that do not meet your cri-
teria. For instance, entering “$gmag < 17” (where gmag
is the name of the column, to which you have added a
dollar sign $, which denotes in some programming lan-
guages that this is a variable) and clicking on the “Filter”

https://dr9.sdss.org/fields/

24

button near the bottom of the window will only keep
those objects whose g-magnitude is smaller (brighter!)
than mg = 17. You can connect several such conditions
with && for a logical “and” or ‖ for logical “or”, e.g.
“$gmag < 17 ‖ $umag < 16” if any object with either
mg < 17 or mu < 16 is fine.

The sort functionality of the catalog window provides
another possibility for finding your way around the cat-
alog data. To the right of the “Sort” marker is a menu
that lets you choose any of the columns of the catalog.
To the right, by checking a box, you can choose whether
to sort the catalog using values in that particular column
in ascending or descending order (increase or decrease).

3.7. Photometry with regions and statistics

Let us continue with the SDSS image we had opened in
the previous section. If you haven’t done so, choose the
SDSS DR9 catalog. Sort the catalog by gmag in increas-
ing order so you can pick out specific values for gmag.
Go to the star with gmag 19.659. It’s at around RA
20.0714 and Dec +19.9777, corresponding to the pixel
coordinates X = 1819, Y = 1215.

Fig. 44.— A circular region, not selected (left) and selected
(right). The much smaller green circles are the catalog indicators
and not related to the region itself

Next, we are going to define a circular region around
this star. First, I zoom in considerably, going to “Zoom
4” and clicking “Zoom in” once. In order to do add
the region, go to the top menu and, from the dropdown
menu “Edit”, choose the item “Region.” Now we are in
region mode. Still in the top menu, from the dropdown
menu “Region”, go to the sub-menu “Shapes” and select
“Circle”. Now, click on the star we have chosen. A larger
green circle outline appears, marking the region we have
chosen, cf. the left part of Fig. 44. Click within that
circle, and the region is selected, indicated by the four
dots framing it, as in the right part of Fig. 44. Now
you can pull the circle around by clicking, holding and
dragging. Centre it on the star.

By double clicking on the circle (while still in the “Re-
gion” edit mode), you can bring up an extra window
describing the region, cf. Fig. 45. Let us call this the
“region window,” for short. The window allows you to
read off the basic properties of your region — in the case
of a circle, center and radius. You can also change the
properties by hand, giving them specific values. We will
change the radius of our circle, making it as large as pos-
sible while keeping it sufficiently small not to include any

Fig. 45.— The extra window for our circular region

other stars than that in the centre. Trial-and-error sug-
gests to me that around 11 arc seconds is a good value in
this particular case — we just about avoid the next star
to the lower left of our region. To change the radius value
to 11 arc seconds, first change the unit of the radius to
“arcsec” by choosing that value from the dropdown menu
that initially reads “Degrees”. Input the value 11 for the
radius. Press “Apply” so that your choice is applied to
the region. You will probably see the region circle get a
little larger in consequence.

As long as the small region window is active, you can go
to the top menu, go to the dropdown menu “Analysis”,
and choose “Statistics”. Yet another window will pop up,
this one with information about the pixels in the selected
region, cf. Fig. 46. This window provides us with several

Fig. 46.— Statistics window for our region

interesting bits of information. It shows us the center
of the circle, and also the pixel scale, mapping image
pixels to arc second intervals on the sky. A bit lower,
we are provided with the sum of the pixel values within
the region, in this case C1 = 15.34, and its measurement
error, the region’s area in square arc seconds, namely
A1 = 376.55, as well as the resulting surface brightness.

The bottom line shows you additional statistical de-
scriptors for the pixel values within the region, namely
mean, median, minimum, maximum, variance, standard
deviation and root-mean-square (rms).

You can also get DS9 to display a histogram of pixel
values. Activate the region window and, in the top
menu, from the dropdown menu “Analysis,” choose “his-
togram”. In our case, most of the values appear to be
centered around zero, cf. Fig. 47. That appears to be
the background plus noise.

Let us use the statistics function for regions to per-

25

Fig. 47.— Histogram for the pixel values in our selected region

form a simple aperture photometry measurement. In
most FITS files of astronomical images, a pixel value
is proportional to the light falling onto that particular
portion of the detector (although possibly there may be
an overall offset added in), that is, proportional to the
flux density of the incoming light. (When comparing dif-
ferent images, you need to be a bit more circumspect
— for instance, if those images have different exposure
times, and the pixel values correspond to the energy that
was collected, you will need to rescale in order to make a
valid comparison between an object in one and an object
in the other image.) In the case of our SDSS, the BUNIT
keyword tells us we are dealing with a property that is
proportional to a value in Jansky, and thus a flux.

Let us make a relative brightness measurement within
the image, as follows. First, a second measurement on
our first selected star, this time with a smaller circle that
just about takes in the star and its immediate neighbour-
hood; I choose a radius of 8 arc seconds, and get a sum
of pixel values C2 = 14.17 and area A2 = 200.82. The
brightness density of the annulus bounded by the two
circles, in pixel values per square arc second, is

cbg =
C1 − C2

A1 −A2
. (5)

After all, C1 − C2 is the sum of the pixel values in the
bigger circle minus the sum in the smaller circle; their
difference is the sum of pixel values in the annulus. Di-
viding this by the area of the annulus A1 −A2 in square
arc seconds gives us the brightness density. In our case,
we have cbg = 0.006658 per square second.

The amount of light reaching us from within the
smaller, second circle is the light we receive from the star
plus the light reaching us from the background sources
within that circle. We assume that the background con-
tribution per pixel from the little circle is about the same
as for the surrounding annulus, which would add up to
a total background contribution of cbg · A2. Subtracting
this from the sum C2, we get an estimate for the amount
of light l received from the star, namely

l = C2 −
C1 − C2

A1 −A2
·A2. (6)

In our particular case, lA = 12.83. Note that subtracting
the background contribution also subtracts any overall
offset values, so l should indeed be proportional to the
amount of light that was received from this star.

Let us repeat this measurement with another star.
Going down the list, I select the one with g magni-
tude 17.529, near the bottom of the image frame, at
X = 1123, Y = 34. Repeating the same measure-
ments with a larger circle 13 arc seconds in radius and
a smaller circle with a radius of 8 arc seconds, I ob-
tain C1 = 108.36, A1 = 534.70 square arc seconds,
C2 = 107.57, A2 = 200.82, and applying formula (6),
I obtain lB = 107.09.

The flux ratio between the two is

lB
lA

= 8.35 (7)

so in this sense, and in this filter band, the second star
is a bit over 8 times brighter than the first.

We can cross-check that against the published g mag-
nitudes. After all, given that the collecting area and the
exposure time are the same in both cases, the ratio of
our values lB and lA should be the same as the ratio of
the intensities of the two stars. Inserting this into equa-
tion (1) for the astronomical magnitudes, we find that
we should have

mA −mB = −2.5 · log

(
lA
lB

)
= 2.30. (8)

The difference in the stars’ catalog g magnitudes (gmag)
is 2.13. Even with our simple measurements, we have
reproduced the relative brightness of those stars with a
deviation of 0.17 mag, corresponding to an error in their
relative flux of 17%. Acceptable for a relatively crude,
off-the-cuff measurement.

Given suitable data, we could measure changes in
brightness in the same way: Compare a non-variable star
(or an ensemble of several such stars) with a star whose
brightness varies over time, and document the varying
star’s light curve. Given suitably precise measurements,
you can even detect a transiting exoplanet in this way,
although this will typically require considerable accuracy
— 1% in some cases, much higher accuracy in others.

3.8. Profiles

DS9 also gives you the tools to create bright-
ness profiles from astronomical images. We will
take an example image from the THINGS survey by
Fabian Walter et al.,13 the data of which is avail-
able for download from the THINGS project website at
[http://www.mpia.de/THINGS/Data.html]. THINGS
stands for “The HI Nearby Galaxy Survey” and provides
observations of nearby galaxies in and around the HI 21
cm line, undertaken with the Very Large Array (VLA)
in Socorro, New Mexico.

For the following, please download the “ro” version of
the “moment 1” file for the galaxy NGC 3198, which is
named “NGC 3198 RO MOM1 THINGS.FITS”. This is
a radial velocity map, with each pixel showing the aver-
age speed at which atomic hydrogen gas in that region of

13 A description of the THINGS survey can be found in Walter
et al. 2008, https://arxiv.org/abs/0810.2125

http://www.mpia.de/THINGS/Data.html
https://arxiv.org/abs/0810.2125

26

the galaxy moves away from us or towards us. Open the
file with DS9, and from the FITS header, you will see
that the units for each pixel are “METR/SEC,” meter
per second.

Let us go into region mode again, going to the top
menu, there to the dropdown menu “Edit”, and in that
menu, on “Region.” We choose a particular type of re-
gion: in the top menu, open the dropdown menu “Re-
gion” and in the sub-menu “Shape,” choose “Projection”.

Fig. 48.— A profile shape laid along the major axis of the galaxy
NGC 3198’s THINGS first moment map.

Now, click on one point of the image, hold your mouse
button and drag to another point. DS9 will join the
two points with a slim rectangle and, at the same time,
open a new window that shows the profile of pixel values
along that slim rectangle. Pixel values are averaged over
the direction perpendicular to the profile; in that way,
you can iron out some of the local variations (including
noise) and get an accurate representation of trends on
larger scales.14 If the profile window has gotten lost,
select the region and double-click the region window; in
the top menu, under “Analysis”, uncheck and re-check
the “Plot 2D”, and the profile window should re-appear.

Click on that rectangle while still in region mode, and
little dots appear — you can drag the outer dots around
to change the position, orientation and length of the pro-
jection area, and the centre dot to change the width.
In our example, I have laid the profile, 6 pixels wide
along the major axis of the apparent ellipse formed by
the galaxy NGC 3198 in the sky, see Fig. 48. The corre-
sponding profile curve can be seen in Fig. 49.

14 If you want the sum of the pixel values and not the aver-
age, you can change that in the top menu associated with the re-
gion window — under “Analysis”, you find a “Method” sub-menus
where you can set a check mark at “Average” (default) or “Sum”.

Fig. 49.— Radial velocity profile of NGC 3198 based on the first
moment map.

When the profile curve window is active, you can go to
the item “File” in the top menu and, from the dropdown
menu, choose “Statistic”. That will give you minimum,
maximum, mean and a few other statistical descriptors
about the data.

In our case, we can see that the radial velocity grows
anti-symmetrically with distance from the galaxy’s cen-
ter. The mean radial velocity is at 670 km/s, which is
the velocity at which the galaxy as a whole recedes from
us. The curve shows how different parts of the galaxy
move towards us or away from us as the galaxy rotates.
(In order to determine the rotation speed of the galaxy,
we would need to de-project the radial velocities, though,
as the disk of the galaxy is tilted relative to our line of
sight.)

The fact that the curve flattens out at larger radii is
a piece of the puzzle that is the evidence for dark mat-
ter: Going by the galaxy’s visible matter (in the shape
of stars and gas), one would expect the rotation speed
to decrease beyond a certain distance from the centre.
The fact that it doesn’t points to a surrounding halo of
additional, non-luminous matter. Comparing the rota-
tion curve measurement with the expected result based
on the galaxy’s brightness, it is possible to quantify how
much dark matter is needed to keep the galaxy together.
Rotation curves like this, such as the ones measured by
Vera Rubin and Kent Ford in the 1970s, are an important
piece of the puzzle that has led astronomers to postulate
the existence of dark matter, which does not absorb or
emit light or other forms of electromagnetic radiation.

4. TOPCAT AND TABLE DATA

Next, let us look at application software for deal-
ing with higher-level astronomical data, such as cat-
alog data or, more generally, tables. The software
is called TOPCAT, which stands for “Tool for OP-
erations on Catalogues And Tables.” It was devel-
oped by the astronomer Mark Taylor at the Univer-
sity of Bristol, and its tagline is “does what you

27

want with tables”. TOPCAT can be downloaded un-
der this link [http://www.star.bris.ac.uk/˜mbt/topcat/].
It can do many, many things with tables, includ-
ing creating diagrams, histograms, all-sky plots and
the like. We will only scratch the surface of TOP-
CAT’s functionality. You can find more comprehen-
sive tutorials on the TOPCAT page, notably here:
[http://www.star.bristol.ac.uk/˜mbt/topcat/#further].

TOPCAT is based on Java, so if you haven’t
got a suitably recent version of the Java Runtime
Environment (JRE) on your computer, you will
need to download it from the Oracle website at
[http://www.oracle.com/technetwork/java/index.html].
(Fortunately, installing Java is comparatively pain-free!)

4.1. Opening a table file

When you open TOPCAT, it looks as shown in Fig. 50.
There will be an additional row of menu keywords —
on the Windows and Linux versions at the time of this
writing (Windows), this row can be found across the top
of the window, in the current Mac operating system (I’m
on macOS 10.12.6) at the top of the screen. Again, as
operating systems evolve over time, the position of this
menu might change. I will call it the top menu, for short.

TOPCAT opens additional windows for different
functionality, but what Fig. 50 shows is the TOPCAT
base window. If you close that window, you will close
TOPCAT. Near the top, there is a row of icons; Fig. 51

Fig. 50.— The TOPCAT main window

shows a few that we will need in the following. A
mouse-over will also tell you what each icon does. Let

Load Table View Data Sky Plot

TAP Plane Plot Histogram

Fig. 51.— Some of the TOPCAT icons

us load an example table from a file. Specifically, go
to the data page of the Galaxy Zoo project, which can
be found at [https://data.galaxyzoo.org/]. Specifically,
we will look at the Galaxy zoo data release 2, table
5 “Table 5 – Main sample, spectroscopic redshifts”
near the middle of the page. You can see there are
several possibilities for download: a csv file, a fits file

and a VO table file. Please download the fits file.15

The meaning of the columns can be found under this link:
[https://data.galaxyzoo.org/data/gz2/zoo2MainSpecz.txt].
The scientific paper describing the data release is Willett
et al. 2013, [https://arxiv.org/abs/1308.3496v2]. The
file itself is zipped (that is, compressed so as to make its
file size smaller). TOPCAT should be smart enough to
unzip it on its own.16

In order to open the file, click on the “Open Table”
symbol in the TOPCAT base window (cf. Fig. 51), or
go to the “File” tab in the top menu and choose “Open
Table” there. In most cases, we can leave the “Format”
selection in the “Open Table” window on “(auto)” and
TOPCAT will find out on its own the type of the ta-
ble file, and open the file accordingly. If you should get
an error when attempting to open the file, you can try
to specify the table type explicitly using the “Format”
dropdown menu.

Open the “Filestore Browser”, select the file choose
zoo2MainSpecz.fits.gz, the Galaxy Zoo list of classified
galaxies, and click on “OK” to load it. Topcat now looks
as in Fig. 52.

Fig. 52.— TOPCAT after having loaded our file

The name of the table file, the number of rows and the
number of columns are displayed, and some of the icons
that were initially greyed out (because they only work
once a table is loaded) are now accessible. By clicking on
the “View table data” icon (cf. Fig. 51) or by going to the
top menu, choosing the “Views” drop-down menu and
clicking “Table Data”, you can get an overview of your
table data, column names included, in a new window, as
in Fig. 53.

15 Should the galaxy zoo pages have changed drastically since
the time this text was written, you can find a local version of the
same table at http://www.haus-der-astronomie.de/working-with-
astro-data

16 If it doesn’t, then, on Windows, you will need to use software
such as 7–zip to unpack the file. On a Linux distribution, running
the gunzip command in the command line should work (“gunzip
zoo2MainSpecz.fits.gz”). On a Mac, double clicking on the file in
the finder should do the trick.

http://www.star.bris.ac.uk/~mbt/topcat/
http://www.star.bristol.ac.uk/~mbt/topcat/#further
http://www.oracle.com/technetwork/java/index.html
https://data.galaxyzoo.org/
https://data.galaxyzoo.org/data/gz2/zoo2MainSpecz.txt
https://arxiv.org/abs/1308.3496v2
https://arxiv.org/abs/1308.3496v2
http://www.haus-der-astronomie.de/working-with-astro-data
http://www.haus-der-astronomie.de/working-with-astro-data

28

Fig. 53.— The TOPCAT main window with table data loaded

Click the icons next to “View table data” and you will
be given either the general table data (such as the num-
ber of columns) or an overview of the columns and their
properties, respectively. The column overview includes
a description (where available), and the type of variable
stored.

4.2. Making a sky plot

TOPCAT provides several possibilities of viewing your
data. Let’s begin with functionality that is specific to as-
tronomy. When you are given a catalog of astronomical
objects, you might be interested in seeing where on the
celestial sphere these objects are located. Are you look-
ing at a full-sky survey, or a catalog that spans only one
particular region? Let us ask this question for the Galaxy
Zoo list of galaxies we have loaded into TOPCAT. Where
on the celestial sphere are these galaxies located?

To this end, go to the main window (where we clicked
the “view data” icon previously) and click the sky plot
icon (cf. Fig. 51). Alternatively, in the top horizon-
tal menu, choose Graphics → Sky Plot. Standard cata-
log data will include columns giving right ascension and
declination, usually indicated by abbreviations like RA
or Dec or similar, of the objects in question. TOPCAT
is usually smart enough to find those columns, and plot
your objects’ positions in the sky. The result will be dis-
played in an extra window, as shown in Fig. 54. You
can click and hold with your left mouse button on the
sky sphere, dragging it around. That way, you can see
that the SDSS did a detailed study of a larger patch of
the sky, but also studied selected strips of sky in nearly
the opposite direction. The physical motivation for this:
If you look only in one direction, you might miss that
the universe has completely different properties in an-
other direction. Checking up on at least some sample
regions elsewhere in the sky is not foolproof, but can at
least go some way towards showing you that the overall
properties of the universe indeed do not depend on your
direction of view (in other words, that the universe is
isotropic).

The Sky Plot window comes with its own variety of
options for customisation. For instance, by clicking on
“Axes” in the bottom left field, you can easily vary at
least some aspects of the visualisation. If you click on
“Axes”, the options field directly to the right will change.
In the tab “Projection” you can change the projection
from the default “sin” (which shows you a projection of
the celestial sphere) to the world-map like “aitoff” or
to the rectilinear coordinate plot “car”. Under the tab
“grid”, you can shift the slider “Grid Crowding” to make

Fig. 54.— The TOPCAT Skyplot window

the grid of coordinate lines denser or less dense. Have a
look around, and try some of the options.

Before we explore TOPCAT a bit further, let us look
at other ways of obtaining a table to work with: not as a
file to be loaded, but directly from an astronomical data
service: via the Virtual Observatory.

4.3. Virtual Observatory (VO) services

Astronomical data bases are getting larger and larger,
and downloading all the data beforehand becomes more
and more awkward as the file size increases. Fortunately,
there are ways of searching online data bases for exactly
the data you need for your project — that way, you only
handle the data you really need. For tables, the neces-
sary search can be handled by the ”table access protocol”
TAP, using the astronomical data base query language
ADQL (which is very similar to SQL). Is TOPCAT still
open? If not, open it please.

In the top menu, go to the tab ”VO” (for ”Virtual
Observatory”), and select the item ”Table Access Pro-
tocol (TAP) Query”. Alternatively, you can click on
the TAP icon (cf. Fig. 51) in the main TOPCAT win-
dow. The window that should pop up can be seen in
Fig. 55. For data access, we will connect with a spe-
cific VO service — that is, a data base that offers on-
line access. We can do so either by choosing a service

29

Fig. 55.— The Table Access Protocol (TAP) window

from the list in the window, or by using the field near
the bottom to enter the URL of a specific astronom-
ical data base service. We will choose the ESA data
base for the astrometry satellite Gaia, which is simply
listed as GAIA in the TAP window. Double-click on
GAIA and you will get additional information, as shown
in Fig. 56. In the field on the left, you can see the specific

Fig. 56.— The TAP window with the GAIA service selected

tables you can access using the chosen service. In this
example, in the folder gaiadr1 (that is, from the first
data release) you have gaiadr1.allwise best neighbour,
gaiadr1.allwise best neighbourhood, and so on (which
names are only partly visible in the window as it is shown
above – expand the window by moving its boundaries if
you need to!).

To learn more about any such table, specifically about

the kind of information stored there, go to that table’s en-
try in said window on the left, and double-click on it. For
our example, we scroll down to gaiadr2 and double-click
on gaiadr2.gaia source, which is the main table listing re-
sults from the second Gaia data release for the stars (or
other point sources) examined, such as positions, paral-
laxes, proper motion and, for some of the stars, physical
parameters like the effective temperature. This data re-
lease, published on 25 April 2018, revolutionized astron-
omy, and after one year had led to a remarkable 1200
papers based on the data — 100 papers per month!

Let us find out the properties that the table is listing
for each object. Once we have left-clicked on the specific
table in the list on the left, we need only click on the
“Columns” tab in the sub-window on the right; TOP-
CAT will show us information about these properties.
Picturing the table as consisting of various columns and
a certain number of rows, each column corresponds to a
specific property, while each row corresponds to an as-
tronomical object included in the table. For the table
gaiadr2.gaia source, the result looks as shown in Fig. 57.
For instance, the sixth line in the list on the right tells

Fig. 57.— Columns for the Gaia DR2 data set

us that there is a property named “ra” in the table. It
is stored as a DOUBLE, that is, as a particularly precise
floating point number, and it has the unit “deg”, de-
grees. That property (as per the description given there,
as well as per universal astronomical convention) is the
right ascension. So for each object in the table where
that property is available, the table lists the right as-
cension, denoted here by ’ra’. Two below is the object’s
declination, in this case denoted by “dec”, which is again
a DOUBLE with units “deg”.

So far, none of that data is available to us to manipu-
late or to plot. In order to access data from that or any
other VO table, we need to execute a query, asking the
data base to return a specific set of data. Such queries are
formulated in the Astronomical Data Query Language
(ADQL), which is a close kin to the more general data
base query language SQL (pronounced “Ess-Que-Ell” or
“Sequel,” depending on whom you ask). Our queries go
into the bottom entry field in the TAP window, which
is headed “ADQL text”. Let’s talk about the basics of
ADQL.

30

4.4. Basic ADQL queries

Data base queries are not all that different from what
you would request in natural language. “Data base,
please select for me the right ascension and declination
for all objects that are listed in the gaiadr2.gaia source
table, and return the result for me as a list” is how we
would formulate that request if we were talking to a hu-
man being. In ADQL, that same request would be

SELECT ra, dec
FROM gaiadr2.gaia_source

where “ra” and “dec” are the table’s names for these
properties, standing for right ascension and declination,
respectively; we looked those up in the “columns” list.
SELECT and FROM are parts of the ADQL language. I
have written them in all caps here; that is not a require-
ment, but makes the query more readable for us humans,
as it clearly separates the language’s commands from the
names of properties and data bases.

If we were to run this query, it would likely take a long
time; after all, Gaia DR2 provides those properties for
more than 1.3 billion sources! Let us restrict our query
somewhat by telling the data base that we want to look
only at some specific area in the sky. Let us look at the
Andromeda galaxy. In natural language, we would now
ask “Dear data base, could you please select for me right
ascension and declination for those objects that are listed
in the gaiadr2.gaia source table and that are close to the
position of the Andromeda galaxy?”

What is close to the position of the Andromeda galaxy?
Luckily, since that is a common astronomical question,
ADQL has a function for that. Let’s first see the query
as a whole:

SELECT ra, dec
FROM gaiadr2.gaia_source
WHERE 1=CONTAINS(POINT(’ICRS’,ra,dec),

CIRCLE(’ICRS’,10.684708,41.268750,
3.2))

The first two lines are the same as before: We se-
lect right ascension ra and declination dec from the
Gaia DR2 source table. The rest of the query be-
gins with “WHERE” encodes our condition. We do
not want all the results for ra, dec, but only those re-
sults WHERE a specific condition is met. That con-
dition is defined after the keyword WHERE. The CIR-
CLE(’ICRS’,10.684708,41.268750, 3.2) is a circular re-
gion in the sky — its center point in the ICRS (“Inter-
national Celestial Reference System”) coordinate system
is at right ascension 10.684708 degrees and declination
41.268750 degrees, which is the center of the Andromeda
galaxy’s location in the sky. The circle’s radius is 3.2 de-
grees. The POINT(’ICRS’, ra, dec) is a point in the sky
with right ascension ra and declination dec, again refer-
ring to the ICRS coordinate system. The “CONTAINS”
is a function that takes a point and a region (the region,
in our case, is the aforementioned circle) and returns 1
if the point is contained in the region, and 0 otherwise.
Taken everything together, our query should select ra
and dec for all Gaia DR2 objects contained in a 3.2 de-
grees circle around the center point of Andromeda.

To execute the query, we need to write it (or paste it)

in the ADQL text window, as shown in Fig. 58. If we

Fig. 58.— An ADQL query entered in the TAP window

now press the “Run Query” at the bottom, the query will
be executed. (Or not, if we have made a syntax error —
if there is an error, we will get an error message.) During
the download, there will be a temporary download win-
dow with an animated progress bar. Once the download
is complete, the main TOPCAT window will push itself
into the foreground, showing that the table with the re-
sults has been loaded and is ready for inspection. Our
table has 419,949 rows, that is: we have retrieved ra and
dec for 419,949 astronomical objects!

Let’s take a quick look at our data by clicking on the
“plane plot” icon (cf. Fig. 51) to produce a simple plot.
The result is shown in Fig. 59. This is quite nice! Mind
you, this is not an image of the Andromeda galaxy. This
is a diagram showing point sources identified by Gaia
DR2, in other words: this is a plot showing Andromeda
as traced by separate stars identified within the galaxy!
Note that TOPCAT has automatically switched to some
type of density plot, where regions with more point ob-
jects in them are darker. If TOPCAT had simply plotted
all the data points on top of each other in red, we would
be looking at a solid red plane.

Imagine now that we want to look at the whole sky,
not just at a small region, but that we still do not want
to download all the Gaia DR2 data. One way out would
be to just look at the brightest stars in the Gaia DR2
catalog, as the following query does:

SELECT TOP 1000000 ra, dec, phot_g_mean_mag
FROM gaiadr2.gaia_source
ORDER BY phot_g_mean_mag ASC

Let’s look at what is new with this query. First of all, we
are selecting one additional property: phot g mean mag,
which is the magnitude (that is, the brightness expressed
in the usual logarithmic scale of astronomy) of the object
in question in the G filter band.

But the SELECT has been amended as well: we are
only selecting the TOP 1000000, the first million of rows
of our result. Top with respect to what? That is speci-
fied in the last line, where we ask the data base to order
the table so that all values of phot g mean mag are in as-

31

Fig. 59.— A plane plot of the Andromeda galaxy, based on Gaia
DR2

cending order (ASC; descending order would be DESC).
So our TOP 1000000 selects the 1000000 objects with the
smallest magnitude value, that is: the 1000000 brightest
objects in the resulting table. When we make a plane
plot of those, we see that there is a curved band where
there are particularly many stars, Fig. 60. That band is
the Milky Way (in a plane ra-dec plot). Note that the
brightness is reversed: Where there are many stars, the
plot is dark. Those regions where parts of the Milky Way
are hidden behind dark clouds, and where in consequence
we see fewer stars, are brighter in this plot. If you want
to see how the Milky Way is stretched as a ring across
the sky, make a Sky Plot of this data.

In this case, we looked at the brightest stars. What
if we do not want to single out bright stars, but instead
select a representative sample of all stars? Many data
bases provide auxiliary information which helps us to do
just that. Consider the following query:

SELECT TOP 1000000 ra, dec
FROM gaiadr2.gaia_source
ORDER BY random_index

The basic structure is as before: We select only the top N
rows, and we have ordered the table from which those top

Fig. 60.— The brightest stars from the Gaia DR2 catalog

rows are selected. But this time, we order by the entry
for random index, which is defined as follows: For a data
set with N entries, the column random index contains
a random permutation of the integers from 1 to N . If
we select the top M rows from the table, ordered by
the random index column, we should get a random sub-
sample from the table.

Note that this is not a generic ADQL feature, but in-
stead relies on the Gaia team having supplied an extra
column random index for the purpose. But since the
need for easy extraction of a random sub-sample arises
quite often, numerous catalogues provide the same ser-
vice. The result of our sample extraction, shown again
as a plane plot, is shown in Fig. MilkyWayPlot2. By not

Fig. 61.— Plot of a random sub-sample of Gaia DR2 stars

32

focussing on the brightest stars, but on all kinds of stars,
we can now make out some extra structure, namely the
Large Magellanic Cloud and the Small Magellanic cloud,
our nearest neighbouring galaxies, in the bottom left cor-
ner!

At other times, we need to combine data from more
than one table. For instance, the GAIA service offers
a table gaiadr2.vari cepheid containing all the stars in
DR2 that the system has (so far) identified as Cepheids.
The table does provide the variable star data, such as the
fundamental pulsation period of the Cepheid in question.
What the table does not contain is elementary astromet-
ric information such as ra and dec.

So what do we do if we want a table listing ra, dec and
pf for the DR2 Cepheids? We must somehow identify
which object in the one table corresponds to which object
in the other table. In ADQL, this is done via the JOIN
operation. The complete query in our case is

SELECT s.ra, s.dec, c.pf
FROM gaiadr2.gaia_source AS s
JOIN gaiadr2.vari_cepheid AS c
USING (source_id)

Begin by looking at the second row. Again, we are se-
lecting FROM a table, namely from gaiadr2.gaia source,
but this is followed by “AS s”. The “s” is simply a name
we are giving to that table. If you look in the first row,
that name is added to the properties we are selecting
from that particular table: ra and dec are now written
as s.ra and s.dec to make clear where they come from.

The third line is “JOIN gaiadr2.vari cepheid AS c”,
which is the command to join that table to the first one.
The second table, too, gets a short name, namely “c”.
In the first row, the property we select from the second
table has a c. in front, namely c.pf for the fundamental
period of the Cepheid.

How are the tables to be joined? How do we know that
a row in the first table and a row in the second table re-
fer to one and the same object? Fortunately, both tables
include a unique identifier for the astronomical objects
listed, namely the source id. The last line in the query,
“USING (source id)”, tells the data base that when se-
lecting object data for one object from the first and from
the second data, we should go by the source id. Our
result includes only cases where such a match has been
successful – so in this case, our result is a table listing ra,
dec and pf for all 9575 objects that are contained both
in the Cepheid table and in the source table.

4.5. Selections and subsets

TOPCAT has helpful functionality that allows you to
select subsets directly from a 2D plot. It happens fairly
regularly that we are interested in comparing a subset of
data with the rest. We encountered an example in section
2.7, when we used the Hertzsprung-Russell diagram to
separate our sample into main sequence stars on the one
hand and red giants on the other.

For exploring the properties of those classes, we needed
to look at the distribution of objects in different con-
texts. Our first look, in the Hertzsprung-Russell dia-
gram, showed us there were distinct classes. But for a
physical interpretation, we needed additional representa-
tions, each providing us with additional information: the

combined radius histogram for both types of star showed
us that when it came to the red giants, we were in-
deed dealing with larger-than-usual stars, and the radius-
density diagram identified their unusually low density.

Linking those different representations, and seeing the
same distinction between classes in all of them, which
allowed us to compare properties and to characterise the
two classes of stars, was a crucial tool in that process.
Our data sets for these stars are multi-dimensional; as
human beings, with two-dimensional vision, we cannot
explore such a multi-dimensional space at a glance with-
out looking at different kinds of plots.

TOPCAT allows users to perform just kind of explo-
ration by taking a diagram, defining a subset “by eye”
directly in that diagram, and then look at that subset in
other diagrams, as well.17

As an example, let us look at open star clusters with
Gaia. In order to find members of an open star cluster,
it is not enough to look at the region of the sky where
the star cluster is located — our view of that region is
likely to include both stars that are much closer and stars
that are much further away than the cluster we are in-
terested in, but which just happen to be visible in the
same direction as our cluster.

In the TAP window, execute the following query:

SELECT ra, dec, pmra, pmdec, bp_g, phot_g_mean_mag
FROM gaiadr2.gaia_source
WHERE 1=CONTAINS(POINT(’ICRS’,ra,dec),

CIRCLE(’ICRS’,12.1083,85.2550, 0.4))

We are getting ra and dec, but also the proper mo-
tion (that is, the motion of the stars on the celestial
sphere) in the ra and dec directions, pmra and pmdec,
respectively. bp g is the blue minus the green bright-
ness of the object, which serves as a measure of colour,
and phot g mean mag is the magnitude (brightness) in
Gaia’s broad G band, which can stand in for the object’s
overall brightness. Once the table has loaded, click the
“Plane Plot” icon (cf. Fig. 51). The 2D plot window will
open; part of it is shown in Fig. 62, which is a RA-Dec
plot of the stars we have retrieved. There is no straight-
forward way of telling which of the stars belong to our
cluster, and which don’t. In the bottom-right part of
Fig. 62, there is a line “X: ra” and directly below “Y:
dec.” To the right of each line are two small arrow sym-
bols. Click those to choose a table column other than
ra for the X coordinate, and other than dec for the Y
coordinate. In particular, choose X as “pmra” and Y as
“pmdec”. Now you are plotting the proper motions of
the stars in our table; the plot itself should now look as
in Fig. 63.

Most of the stars are distributed symmetrically around
the origin (pmra=0, pmdec=0). But there is a marked
concentration, seen as a dark grey dot, that is offset to
the bottom left against the overall distribution. In order
to see it more clearly, let us zoom in. There are several
ways of doing that. On my touchpad, swiping upwards
with two fingers do the trick. (Clicking and moving my
finger moves the chosen region around in the window.)
A mouse wheel would do the same. If that doesn’t work,

17 Later on, in section 8.9, we will briefly encounter Glue, as an
alternative tool for that kind of exploration, [https://glueviz.org].

https://glueviz.org

33

Fig. 62.— RA-Dec plot of the region around NGC 188

Fig. 63.— Proper motion plot of the region around NGC 188

Fig. 64.— Zoomed-in proper motion plot of the region around
NGC 188

you can always click on the “Axes” symbol in the lower
left part of the window, choose the “Range” tab, and ad-
just the range either by entering minimum and maximum
values directly or by changing the sliders. Do so to get
a closer look on the offset concentration, as in Fig. 64.
That concentration is our star cluster. Such star clus-
ters form from one and the same molecular cloud, and
inherit the clouds overall velocity — with small varia-
tions, as the cluster stars themselves attract each other.
That is why selecting a subset in a velocity diagram, in
this case the two velocity components orthogonal to the
line of sight, is a suitable way of selecting all the cluster
stars, distinguishing them from other stars that might
lie in the same direction, but are unlikely to move at the
same velocity.

In the zoomed-in image, we can now choose a suitable
subset. Look at the top row of icons in the Plane Plot
window, as shown in Fig. 65. The icon I have marked

Fig. 65.— The top row of the “Plane Plot” window

with the red A is the “Draw Region” icon. Click it, and
you can draw (by holding your left mouse button pressed
and dragging) a region onto the plot, delineating an area
that will be filled gray as you draw. In Fig. 66, you can
see the small gray region that I have drawn, right where
the off-center concentration of stars is. You can also
see that the “Draw Region” icon now features a check
mark. Clicking on that icon and its check mark signals
to TOPCAT that you have drawn your desired region,
and that TOPCAT should now create a subset based on
that selection. In response, TOPCAT will open up the
“New Subset” window shown in Fig. 67. Enter a name
(as I have, in this case: “ngc188”) and click on “Add
Subset” to create the new subset. (If you are dissatisfied
with your choice, click on “Cancel” and you can start

34

Fig. 66.— Marked subset of the proper motion plot of NGC 188

Fig. 67.— The “New Subset” window

over again with selecting your subset.)
Now, when you go back to the plotting window, you

will see the subset marked in a different colour; in Fig. 68,
in blue. In the lower-left subwindow of Plane Plot, go to
the line representing your data (in our case, the lowest, of
which you can just about make out 21: TAP, marked in
blue as selected in Fig. 68). In the tab “Subset” (already
selected in Fig. 68), I have removed the checkmark from
“All”, so now only the subset ngc188 is visible. In that
way, we can make plots or histograms for the subset only.

4.6. More on plotting

In the preceding section, we have already looked at
basic plots, and learned how to choose custom X and Y
axis values from the columns of our data set. Let us do
some more plotting, and create histograms, for the subset
(stars within the open cluster NGC 188) we have created
in that section. To that end, let us again select the data
points object in the bottom lower sub-window of Plane
Plot (as in Fig. 68), click on the “Position” tab, and se-
lect bp g as the quantity to be plotted along the X axis,
and phot g mean mag for the Y axis. Next, in the bot-
tom left sub-window of Plane Plot, click on “Axes” and
choose the Coords tab. Larger astronomical magnitude
values correspond to lower apparent brightness, and it is

Fig. 68.— Plane Plot with marked subset

customary to invert a magnitude axis, so brighter objects
will be further up. In the Coords tab, we can achieve this
by clicking “Y Flip”. (In passing, note that we could flip
the X axis as well, and that other options include giving
the X and/or the Y axis logarithmic scaling. Also, with
“Aspect lock” we can force an equal aspect ratio, that
is, make sure that both X and Y axis are plotted to the
same scale.) If you had changed the plot scale before,
as I did in the previous section, you will also want to
go to the “Range” tab and revoke any range restrictions
you might have made, pulling the X and Y range slid-
ers back to their respective boundaries. The resulting
plot is shown in Fig. 69. The diagonal bottom-right to
upper-left structure is the main sequence. Near the top,
there is a turnoff point, with an S-shaped swerve to the
right. There is interesting physics behind this: In our
main sequence, the most luminous stars are near the up-
per left (blue and bright). But those stars are also the
most massive, and the shortest-lived — they spend the
shortest time on the main sequence! Presumably, all the
stars in our open cluster have formed at around the same
time, since that is how open clusters come into existence:
as the result of group star formation from one and the
same giant molecular cloud; after some time, the cluster
disperses. Thus what we see near the top of the main
sequence of NGC 188 amounts to the shortest-lived stars
having left, or being in the process of leaving, the main
sequence to become red giants, moving upwards (giants

35

Fig. 69.— Color-magnitude diagram of NGC 188

are brighter!) and to the right (red giants are reddish!) as
they do so. Compare those results with models of stars,
which provide you with information about the lifetimes
of stars as a function of their mass, and you can estimate
the age of the whole star cluster from the location of that
turnoff point.

Fig. 70.— The Form dropdown menu

While TOPCAT does not provide for general fitting, it
can be used to produce a linear fit. To this end, proceed
as in section 4.5 in order to select the cluster’s main se-
quence stars as a subset. Display only that subset. With
the data set selected, go on the “Form” tab, click on
the big green cross to add a new form. The dropdown
menu is shown in Fig. 70. From that dropdown menu,
select “Add LinearFit”. TOPCAT will fit a line to your
data points, and when you select the LinearFit form and
scroll down, it will show you the best-fit parameters it
has chosen, as well as the correlation, cf. Fig. 71. Note
that, for TOPCAT, both the data point representation
(“Mark”) and the linear fit (“LinearFit”) are merely dif-
ferent forms of representing the same data. Other forms,
including more complex ones like XY error bars or el-

Fig. 71.— Linear fit to the main sequence stars of NGC 188

lipses, or a text label, can be added in the same way we
have added the linear fit.

We can also add an additional data set. Let us deselect
the linear fit and the main sequence subset and go back to
the colour-magnitude diagram for NGC 188. Following
the same procedure as in section 4.5, select the stars in
the region of the open cluster M 67, starting with the
TAP query

SELECT ra, dec, pmra, pmdec, bp_g, phot_g_mean_mag
FROM gaiadr2.gaia_source
WHERE 1=CONTAINS(POINT(’ICRS’,ra,dec),

CIRCLE(’ICRS’,132.8250,11.800, 0.4))

and once more selecting a small area around the (clearly
visible) concentration in the pmra-pmdec plane. In the
Plane Plot for M 67, I can then add the NGC 188 data
as an extra data set. There are two ways of doing this.
Either you go to the icons visible directly underneath the
plot sub-window. These icons are shown in Fig. 72. If

Fig. 72.— Icons in the Plane Plot window, located directly below
the displayed plot

you click the panel I have marked with a red A, TOPCAT
will add another data set (“positional plot control”) to
the plot. Click on that data set in the bottom left sub-
window, and you will find you can choose which of the

36

data sets that you have loaded into TOPCAT (cf. the
table list in the main TOPCAT window) you mean to
plot here.

Alternatively you can go to the top menu that is
shown while the “Plane Plot” window is active and,
from the “Layer” sub-menu, select “Add Position Con-
trol”. For the NGC 188 data, you can once more select
the pmra-pmdec subset that represents the star cluster,
and select only that sub-set. When you now plot the
colour-magnitude diagram, colour bp g against bright-
ness phot g mean mag (again with the Y flip as an as-
tronomical convention), you can see the separate plots
for both of the star clusters, as in Fig. 73. There are

Fig. 73.— Colour-magnitude plots for the open star clusters NGC
188 and M 67

two differences between the data point distribution for
the two star clusters. First of all, the main sequence for
M 67 is brighter than for NGC 188. Since we have no
reason to assume that the light from one of the clusters
is shifted to a different colour relative to the other,18 the
simplest assumption is that this is because M 67 is closer
to us than NGC 188. We can make a rough quantita-
tive estimate of distances here, as follows. Recall the
window where we chose which column to plot in the X
and which in the Y direction. In that column, instead
of giving the column’s name, we can write a more com-
plex expression — such as the column name plus a con-
stant value. By trial and error, I find that adding 1.4
to phot g mean mag for M 67, I can make the densest
portions of the main sequence overlap, cf. Fig. 74 (in
the bottom part of the figure, you can see where I have
added 1.4 to the g magnitude by hand — if needed, you
can write much more general functional expressions into
that little window, involving more than one of the col-
umn names, too!). Recall that, from the formula (1) for
astronomical magnitudes, the magnitudes are related to
the intensity of the light we receive from an astronomi-
cal object. That intensity is proportional to an object’s
intrinsic brightness and to the inverse of the square of

18 This could happen: If there is more cosmic dust between us
and the one cluster than between us and the second cluster, we
would expect the first cluster to appear more reddish.

Fig. 74.— Colour-magnitude plots for the open star clusters NGC
188 and M 67

the object’s distance to us (inverse square law). When
two main sequence stars have the same colour, we expect
them to have the same intrinsic brightness. For such ob-
jects, the ratio of the intensity of light reaching Earth
is inversely proportional to the ratio of the squares of
their distances r1, r2; by (1), this means their apparent
magnitudes are related as

m1 −m2 = −2.5 · log

(
r2
2

r2
1

)
= 5 · log

(
r1

r2

)
, (9)

so that
r1

r2
= 100.2(m1−m2). (10)

With m1 −m2 ≈ 1.4, we can estimate that NGC 188 is
about twice as far away from us as M 67. According to
the Simbad astronomical data base19, M 67 is between
0.9 and 0.99 kpc away, NGC 188 between 1.7 and 2.3
kpc, so our rough estimate is consistent with the known
distance measurements.

The shifted version of Fig. 74 shows clearly that for
NGC 188, some of the less bright stars have started to
swerve off the main sequence and become red giants.
NGC 188 must be older than M 67, given that in NGC

19 Accessed by entering the identifiers in the web form at
[http://simbad.u-strasbg.fr/simbad/sim-fbasic], scrolling down to
“Collections of measurements”, selecting and displaying “dis-
tance”.

http://simbad.u-strasbg.fr/simbad/sim-fbasic

37

188, less bright stars are already entering the red giants
stage. Indeed, M 67 is estimated to be around 4 billion
years old, NGC 188 more than five billion years (making
it one of the oldest open star clusters we know).

4.7. Histograms

Next, let us look at some histograms. There is no
separate histogram window, as you can add histogram
data to an ordinary Plane Plot window, but there is a
short-cut in the icons of the TOPCAT main window (cf.
Fig. 51) which directly produces the Plane Plot window
configured for histograms. Choose the pre-selection for,
say, the NGC 188 region data set, and click on the his-
togram icon. A histogram based on values in the first
column of your data set pops up. By selecting your
histogram in the bottom left window (it should be se-
lected by default!), you can again choose different table
columns for the X axis. Choose phot g mean mag, for
instance, and you will be rewarded with the histogram
in Fig. 75. This histogram is a combination of physics

Fig. 75.— Histogram for the g brightness in the stars in the
region of NGC 188

and measurement bias. In general, less luminous stars
are much more common than luminous ones. Also, there
are only very few stars close to us, and many more at
greater distances; with increasing distance, the apparent
brightness becomes less, as well. Both of these reasons
are what explains the increase in the histogram from left
to right. The fact that the histogram comes to a fairly
abrupt end on the right is because the Gaia mission has

a certain limiting magnitude beyond which stars are too
faint to be included in the analysis.

By clicking not on the data itself in the lower-left sub-
window, but on “Bins”, you can customise the histogram.
Under the “Histogram” tab, you can use a slider to ad-
just bin size, or enter the size explicitly in a field. The
“Bin Phase” slider shifts bin position. In the “General”
tab, you can change your histogram to be cumulative,
if that is what you want. Selecting subsets, or re-using
subsets that have already been defined for your data set,
is another possibility, as is displaying two histograms in
the same window.

4.8. A quick look at a spectrum

Spectra play a key role in astronomy. As a special
case of a Plane Plot in TOPCAT, let us download
a sample galaxy spectrum from SDSS, more con-
cretely: for data release 8, let us pick the object
with the id 1237659161195249685, which at least for
me is the default when I open the DR8 object explorer at
[http://skyserver.sdss.org/dr8/en/tools/explore/obj.asp].
In the SpecObj submenu on the left, click on FITS to
download the spectrum as a FITS file by the name of
spec-1330-52822-0304.fits.

To take a quick first look at the spectrum, open it in
TOPCAT like you would open a table (cf. section 4).
You will see that this spectrum actually opens as several
tables, corresponding to different HDUs of the FITS file,
as shown in Fig. 76. If you click on each of the tables,

Fig. 76.— TOPCAT main window with SDSS DR8 spectrum
loaded

its name will be displayed. COADD is the spectrum
we want. SPECOBJ just contains general information
about the object whose spectrum this is, while SPZLINE
describes the spectral lines that have been identified in
the spectrum. The files starting B1 and R1are different
exposures of the (overlapping) blue and red portions of
the spectrum, recorded on separate chips; they have been
added up and combined to give the COADD part we will
use now.

Select the COADD part of the table and click the Plane
Plot window icon (cf. Fig. 51) or, alternatively, choose
Graphics→ Plane Plot from the top menu. In the Plane
Plot window, change the X and Y values – X should be
loglam, the logarithm of the wavelength, and Y should
be flux. You can effect the change by clicking on the
arrow buttons to the right of the field, or alternatively
using the field entry as a dropdown menu.

http://skyserver.sdss.org/dr8/en/tools/explore/obj.asp

38

A spectrum is not just a collection of data points rep-
resenting independent objects. It is a sample of data
points from a continuous distribution curve. Thus, it
makes sense to plot the data points as a connected line
instead of as separate points. To this end, in the Form
tab, open the “Forms” dropdown menu (with the big
green plus sign; for the menu itself, cf. Fig. 70), and cre-
ate a new line plot by clicking the “add a new line form”
button. Then unselect the existing Mark form directly
above, to hide the separate data points.

Finally, click on Axes in the lower-left sub-window, go
to the Range tab, and adjust the X subrange upper and
lower limit, to display the details in a more restricted
wavelength region. By clicking in between the two limit
buttons and dragging, you can drag around the wave-
length region you are looking at. All in all, this should
now allow you a fairly informative quick look at your
spectrum, Fig. 77. What is still a bit unusual is that

Fig. 77.— A quick look at an SDSS spectrum, using Plane Plot

we are plotting the logarithm of the wavelength on the
X axis. To change that, replace “loglam” in the X axis
field by “exp(ln(10)*loglam)” — now the X axis is show-
ing the wavelength, in Angstrom (where 1Å= 0.1 nm),
which is much better if you want to read off the posi-
tions of certain physical features, such as spectral lines.
The result is shown in Fig. 78.

As we have seen in these first sections, there are quite a
lot of things you can do with application software, in this
case DS9 and TOPCAT. We could have chosen differ-
ently and, for instance, introduced the Java-based image
processing and analysis software ImageJ, maintained by
the US National Institutes of Health (since it is also used
in the life sciences), [https://imagej.nih.gov/ij/], or its
astronomical incarnation with suitable extra functional-
ity, astroImageJ20 hosted by the University of Louisville,
[https://www.astro.louisville.edu/software/astroimagej/].

Up to a certain point, such application software is per-
fectly sufficient, and it wouldn’t make much sense to re-
invent the wheels it provides. This is particular true for
a something that you should routinely do when you pre-
pare to settle a new, and possibly unfamiliar data set:
taking a quick look at given data and getting a feeling
what that data is about. But that is not all, as we shall
explore in the next sections.

20 Collins et al. 2017, doi: 10.3847/1538-3881/153/2/77

Fig. 78.— A quick look at an SDSS spectrum, with linear wave-
lengths shown, using Plane Plot

5. GETTING STARTED WITH PYTHON

Application software will only get you so far. As you
follow where your research project leads, you are bound
to come to the point where you need more flexibility, and
more functionality, than such software can provide. The
next step is to make the transition to a programming lan-
guage. In astronomy, one of the most popular, if not the
most popular, programming language is Python. Popu-
larity has tangible consequences — a popular program-
ming language is bound to have a large community of
active users, you are bound to find answers to your prob-
lems and questions on platforms such as Stackoverflow or
in other forums, and specifically for a programming lan-
guage that is popular in astronomy, you are bound to find
that other users have written helpful modules or libraries
that implement helpful astronomy-related functionality.

What follows will not replace a basic introduction to
Python; before you read on, you should probably famil-
iarise yourself with the basics of the language.21 If you
have written code before in another language, that is
bound to help — certain concepts, such as loops or if-
conditions, are fairly universal to coding.

Once you have installed Python, you can and should
work through the examples presented in the following
sections. As you become more advanced, you will con-
tinue to learn by doing, by solving specific problems, by
getting familiar with new techniques — and by googling
your Python questions, or parts of your error messages,
which is surprisingly effective, given that there is a large
Python community out there that has answered an amaz-
ing variety of questions on platforms such as Stackover-
flow.

21 Our summer interns at Haus der Astronomie are fre-
quently in this situation as they prepare themselves for the
internship; a number of them have reported that they found
[https://www.codecademy.com/en/learn/python] helpful as a first
introduction.

https://imagej.nih.gov/ij/
https://www.astro.louisville.edu/software/astroimagej/
https://doi.org/10.3847/1538-3881/153/2/77
https://www.codecademy.com/en/learn/python

39

5.1. Installing Python

Cruel, but true: Some of the most complicated, and
potentially frustrating operations come at the very be-
ginning, as you install Python on your computer. On a
Mac, things should be fairly simple. If you are working
on a Linux machine, you (or whoever installed Linux on
your machine!) probably know enough about what you
are doing that installing Python should work. If you are
on Windows, things might be more difficult.

My recommendation, in general, is to install Ana-
conda python, which is available for Mac, Linux,
and Windows, and which can be downloaded for free
at [https://www.continuum.io/downloads]. Anaconda
comes with many useful packages for astronomy, or sci-
ence in general, installed (Astropy, Numpy, Scipy, . . .).
If you are reading this as part of a course, another in-
stallation might have been recommended by your instruc-
tor — or, a promising trend, Python might be provided
to you in the form of Jupyter notebooks, accessible in
your browser window with no installation required. As-
trobetter, a highly useful website with helpful hints for
astronomers, covering a variety of helpful issues, has a
page on how to install python for astronomy.22 Impor-
tant: For the following, I will assume that you
have installed some version of Python 3.

Anaconda also comes with a helpful programming en-
vironment called Spyder, which makes it (comparatively)
easy to write, run, and debug Python code. So let’s as-
sume you have installed Python successfully, and started
the Spyder software.

5.2. Using Python in Spyder

When you open Spyder, its basic layout should look as
in Fig. 79. I have added big red letters for later reference.

Fig. 79.— Basic Spyder layout

If you are on Windows or on Linux, you might see a menu
bar saying “python file edit search” etc. directly above
the icon bar; on Mac, that same menu bar will be at
the top of your screen when Spyder is active. Again,
this layout might change with future versions of those
operating systems, and again, we will refer to this as the
top menu.

If your window arrangement should happen to look to-
tally different, a possible remedy would be to use the top

22 http://www.astrobetter.com/wiki/Python+Setup+for+Astronomy

menu bar, going to View → Window Layout and click-
ing on “Spyder Default Layout” to give you the default
layout. (Personally, I prefer to drag the separator at the
right border of A some way to the right, enlarging the
window A at the cost of the two windows B and C.)

For now, we will only use the basic functionality. In
window A, we write the code we want to save, and run.
You should definitely save the Python code you are writ-
ing in this window. Conversely, you can load and execute
files containing code that you had written earlier.

In window C, with the tab ”IPython Console” selected,
we can see the results of our code. If our code prints
anything, this is where we will see it. If we plot any
diagrams, this is where they will be displayed.

Window C has one additional, very practical function-
ality. Whenever we program something more compli-
cated, we will write it down as a proper program/script
in window A. But if we merely want to try some line of
code very quickly, we can also enter it directly into win-
dow C, press return, and see the result of that particular
command immediately.

For instance, if we want to know the current value of
the variable a after having run our program, simply enter
a and press return, and the value of a will be displayed.
For instance:

In[0]: a=1.6
In[1]: a
Out[1]: 1.6

In a bit more detail, in the first row, after the prompt
“In[0]:”, I have typed “a=1.6” and then hit return (en-
ter). The program has accepted my input, but does not
produce any immediate output. Instead, it offers me an-
other opportunity for input, this time numbers “In[1]:”
– and there, I type simply “a” and hit return. This time,
the program does return an output value, namely the
value of the variable “a” — with the preface “Out[1]:”
it returns the value 1.6. We will use this ”direct mode”
of executing a command in the following in a number of
places where I am introducing some simple new concept,
or command, and direct execution is the simplest way for
you to see what the command does.

Note that, depending on what you did before, the num-
bers characterising your input and output will vary. If I
repeat the operation immediately, starting with the in-
put prompt “In[2]” the software displays, then the whole
input-output sequence would now look like this:

In[2]: a=1.6
In[3]: a
Out[3]: 1.6

The exact number displayed for each input and possible
corresponding output will change, counting up during
each session. That is why, in all future examples of live
interaction with the system, I will leave out the numbers
altogether. Our simple sequence of defining a, and then
retrieving its values, then looks like this:

In: a=1.6
In: a
Out: 1.6

https://www.continuum.io/downloads
http://www.astrobetter.com/wiki/Python+Setup+for+Astronomy

40

In order to run one of your programs that you have
written in window A, press the green play arrow in the
horizontal list of icons at the top. Fig. 80 shows the left-
hand part of that horizontal bar, to show you the green
arrow, which looks like the universal play (video, song,
. . .) symbol, and its neighbours. Let us have a look

Fig. 80.— Part of the top bar of Spyder

at the icons. The first from the left is the “New File”
icon, which produces a new Python script window for
you to write code in. The second from the left is “Open
File” which opens an existing file. Third from the left is
the “Save” icon — as everyone will tell you, save your
file frequently, please! We will ignore the other icons for
now and return to the green play button.

Imagine that, in window A, you have written the fol-
lowing program (the first lines will have been there when
you created a new file):

#!/usr/bin/env python
-*- coding: utf-8 -*-
"""
Created on Mon Jul 17 13:12:11 2017

@author: poessel
"""

print("Hello world!")

This is the traditional first program. Let’s go through
this: The first line is only important if you run the pro-
gram from the command line as an executable file. It
tells the computer which software to call up to run the
program, in this case: Python.

The second line is a technical one. It tells the com-
puter that whatever text follows uses not only ASCII
characters but could also contain certain special char-
acters (such as the German Umlaute ö, ä, etc.). This
particular set of possible characters is known as ”utf-8”.
What comes next is commented out, and merely gives
anyone reading the script information about when it was
created, and by whom.

Only the last line, print("Hello world!"), is the
command we want executed. So this is the program we
want to run! In order to make it run, you should now
press the green play button.

If this is the first time ever you have pressed the
green play button in Spyder, there will be a pop-up win-
dow asking about working directories, configuration and
more. Just press OK. This window will not bother you
again.

If this is the first time you have pressed the green play
button after creating a new file, the file will be called
something like “untitled1.py”, and once you press the
play button, Spyder will ask you to save the file, and
give it some proper name. Please do that.

Now that we’re ready, press the green play button
again. Now your program will run, and in the IPython
Console in window C (choose the correct tab if it’s not

visible!), you will see its output. It will look something
like this:

In: runfile(’/Users/poessel/pythDir/example1.py’,
wdir=’/Users/poessel/pythDir’)

Out: Hello world!

Under ”In”, spyder is telling us that it is running a partic-
ular file, in this case example1.py (as I named it earlier).
The “wdir=” is followed by the file’s working directory.
This is important if you need to open files, or write out
your results into a file.

If you don’t specify another directory, files you are us-
ing are assumed to be in the working directory (and there
will be an error message if they aren’t, and the software
is looking in vain). Other directories can be specified
relative to the working directory.

For instance, if you try to open a file “figures/this-
Fig.png”, then “figures” is assumed to be a subdirectory
of your working directory.

Now that you have learned about executing code that
you have written in window A, and writing small snip-
pets of code into window C, there are potential pitfalls
you should know about. When you start a script from
window A, or execute a small snippet in window C, the
execution does not start from some blank slate. Instead,
variables you have defined before are already defined, and
modules you have loaded before are already loaded.

In most cases, this “hidden state” is unlikely to lead to
confusion, but in some cases, it can. A simple example:
Your program might rely on a certain variable to have
already been defined. In the situation where you write
the program, and test it, running it again and again, it
could be that this condition is met only because of the
hidden state your program is in after having run another
script, or having run the script in question before. In
that case, you will get an error message as soon as you
try to run that particular code from scratch.

Moving on: a word on commenting your code. There
are two ways of adding comments to your code. Use
them as often as possible — if you don’t, then even you
yourself might not understand what you have written, if
you revisit your code after a while. Adding the hashtag
symbol declares that everything from there until the end
of the line is a comment:

This is a comment
This is not a comment (and will give an error

message!)

For comments spanning several lines, we could of course
add a hashtag at the beginning of each line. But there is
another, more convenient way: We can use three double
quotation marks in a row to mark both the beginning
and the end of the commented-out section:

"""
This is a commend
which can span
several lines.
"""

In window A, a hashtag followed by two percent signs,
#\%\%, has an interesting effect: spyder will draw a sep-

41

arating line, and mark the region your cursor is in (de-
lineated by those separating line, the beginning and the
end of the file) in yellow. Fig. 81 shows an example. In

Fig. 81.— Using hashtag-percent-percent for zoning in Spyder.
The two specific play symbols have been labelled in red as A and
B, by me

this case, the lower region, from the #\%\% to the end
of the file, is marked in yellow (except for the line the
cursor is in, which is marked in pink). Note that, to the
right of the green play symbol, there are two others that
show a region marked in yellow; I have labelled those A
and B in Fig. 81. If you click on the icon labelled A,
Spyder will execute only the part marked in yellow. If
you click on the icon labelled B, Spyder will also execute
the part marked in yellow, and then move on to the next
region, marking that one yellow. This is highly useful
for debugging. If you are not sure what is going wrong
with your code, try to separate your code into regions by
using the #\%\%. Then execute those regions one by one,
seeking to understand what is happening in each.

Another application of this kind of regional execution
is when you have a part of the code that takes a long
time to run. As we discussed, in executing code within a
region, Spyder doesn’t forget what happened before – if
you loaded some modules before, they will still be loaded
and accessible; if you gave certain variables certain val-
ues, these variables will still be defined in the same way.
Thus, imagine that you have already executed the long-
running code once. If you then want to test whatever
part of your programming comes below, simply separate
it from the long-running code by a separating line. That
way, executing just the part of the code you are working
on now will be a matter of e.g. seconds — whereas exe-
cuting the whole of the code, including the long-running
bits, would take much longer.

Some brief remarks on window B: This window has two
tabs. The File Explorer allows you to see what files are
in your working directory. The Variable Explorer shows
you the current values of the variables you have defined
in your program — very useful for a quick glance at what
is going on. Select one of those variables by clicking on
it, and a right mouse click on Windows, or Ctrl + mouse
click on Mac will give you the options of executing spe-
cific operations on it. For list array variables, which we

will encounter in section 7, choosing the plot or histogram
option can be a good way of obtaining more information
here.

5.3. Modules

Some functionality in Python comes out of the box,
and is available whenever you run Python. For less com-
mon functions, you will need to import specific modules.
Some modules that we will use in the following are:

1. Numpy – a collection of mathematical and numer-
ical functions, from sin and cos to integration and
linear algebra. We will use this instead of the
python math module, which also has basic mathe-
matical functions.23

2. Scipy – a collection of functions for scientific cal-
culations. We will use the scipy functionality for
curve fitting, for instance.24

3. Astropy – functions for astronomers, including
those that let us deal with files in the fits format (as
professional astronomical images usually are) and
those that help us with calculating astronomical
quantities.25

4. Matplotlib – our go-to library for plotting diagrams
of various kinds.26

With Anaconda, these modules are already installed.
Other, more specialised modules, you might need to in-
stall yourself. Usually, when you have found (via Google
for instance) a module, it will give you some instructions
on how to install the module. Installation also varies
from operating system to operating system — which is
why I cannot give you a simple, general recipe here.

Once a module is installed on your computer, you can
import it, or parts of it, into the programs you write.
It is customary to place all import statements at the
beginning of your script, so you have an overview of what
has already been imported and what hasn’t.

For instance, here is a script where I import the numpy
module. Once it is imported, I can use the module’s func-
tions. The name of a module’s function in this context
starts with the module name, then a full stop, then the
specific function name. For instance, this script here will
print the sine of 3.1416:

import numpy
print(numpy.sin(1.57079632679))

23 Travis E. Oliphant. A guide to NumPy, USA: Trelgol Pub-
lishing, (2006). Stéfan van der Walt, S. Chris Colbert and Gaël
Varoquaux. The NumPy Array: A Structure for Efficient Numer-
ical Computation, Computing in Science & Engineering, 13, 22-30
(2011), DOI:10.1109/MCSE.2011.37

24 Jones E, Oliphant T E, Peterson P, et al. SciPy: Open Source
Scientific Tools for Python, 2001–, [http://www.scipy.org/] [On-
line; accessed 2019-05-21].

25 Astropy Collaboration (2018): The Astropy Project: Build-
ing an inclusive, open-science project and status of the v2.0 core
package, [https://arxiv.org/abs/1801.02634]. Astropy Collabora-
tion (2013): Astropy: A community Python package for astronomy,
DOI:10.1051/0004-6361/201322068

26 John D. Hunter. Matplotlib: A 2D Graphics Environ-
ment, Computing in Science & Engineering, 9, 90-95 (2007),
DOI:10.1109/MCSE.2007.55

http://dx.doi.org/10.1109/MCSE.2011.37
http://www.scipy.org/
https://arxiv.org/abs/1801.02634
https://doi.org/10.1051/0004-6361/201322068
http://dx.doi.org/10.1109/MCSE.2007.55

42

When executed, the program dutifully returns 1.0 as
the result (since the argument is equal to π/2, up to a
numerical rounding error that is too small to influence
the output).

I can also import the module under another name.
Then, whenever I call a function or constant from that
module, I can use the new (usually abbreviated) name.
Like many other people, I habitually abbreviate numpy
to “np” when I import it:

import numpy as np
print(np.sin(1.57079632679))

If I only need a specific function from the module, I
can import that function directly. Here, I import the
sine function “sin” from the numpy module. Once I have
done this, I do not need to prefix the function with the
module name — I can call the function directly:

from numpy import sin
print(sin(1.57079632679))

When you import a specific function, you can also give
it another name:

from numpy import sin as superDuperSin
print(superDuperSin(1.57079632679))

Sometimes, you will not need the whole module, and
instead import a submodule (that is, a predefined subset
of the module’s functionality). In the section where we
deal with plotting diagrams, we will usually include a
statement

import matplotlib.pyplot as plt

for all our plotting and diagram needs.

6. BASIC OPERATIONS WITH PYTHON

6.1. Meet your new versatile calculator

The least that coding can do for you is serve as a ver-
satile calculator that, an added bonus, documents what
you have been calculating. Imagine that we want to cal-
culate the luminosity of a star with radius R = 695500
km and effective temperature Teff = 5780 K, modelling
the star as a blackbody. We use the Stefan-Boltzmann
law for blackbody radiation, which states that the lumi-
nosity L in that situation is given by

L = 4πR2 · σT 4
eff , (11)

with the Stefan-Boltzmann constant

σ = 5.670367 · 10−8 W

m2K4 .

If you were to type all that into a handheld calculator,
you would need to keep track of all the different steps,
and if worse comes to worse you might make a typo some-
where.

In a Python script, you can define the variables in-
volved one by one, and define the constant sigma, and
then write down the formula for the result using those
variables. You can easily double-check the script once
you have written down. The bit of code in question would
look something like the following:

import numpy as np
Teff = 5780
R=695500*1000
sigma=5.670367e-8
Now the formula:
L = 4*np.pi*R**2*sigma*Teff**4
#...and we print the result:
print(L)

The program dutifully returns 3.68567074251e+26,
which is indeed the luminosity of that particular star,
the Sun, in Watt.

Some notes on the formula: The asterisk * is the stan-
dard sign for multiplication. The double asterisk **
stands for a power, so Teff**4 represents T 4

eff . The ge-
ometric constant π we have imported from the numpy
package; hence the name np.pi.

Note that we had to take care to use the proper units:
the radius R was given in kilometers; in our script, we
have multiplied that number by 1000 in order to get the
(SI) unit of meters.

There is an easier way of doing this, and that is pro-
vided by astropy, as we shall see in the next section, 6.2.

The advantage of doing a calculation as a script, in-
stead of typing it into a pocket calculator, is that you
automatically document what you have done. You can
go back, identify mistakes if necessary. And if you need
to do the same calculation, but for values other than
those you have used in the first case, you can just change
the parameters and let the script run again. Or import a
whole list or array of data, and apply the calculations to
thousands of objects, one after the other, automatically.

6.2. Units and constants

Did you ever mix up your units? If not, good for you.
But even then, keeping track of your units would give you
a handy cross-check for your result. If your result has the
wrong units, something went wrong in the calculation.

The astropy module includes a handy selection of units
and constants from physics and astronomy, and defines a
straightforward way of using those units in calculations.
You can find a list of all the pre-defined units on
the page [http://docs.astropy.org/en/stable/units/],
and of all the pre-defined constants on
[http://docs.astropy.org/en/stable/constants/].

Here is an astropy version of the blackbody luminosity
(11) calculation:

from astropy import constants as const
from astropy import units as u
Teff = 5780*u.K
R = const.R_sun
Now the formula:
L = 4*np.pi*R**2*const.sigma_sb*Teff**4
print the result:
print(L)

The output this time carries a proper physical unit,
namely

3.84713215453e+26 W

Let’s see what we did there. Teff this time was defined
not as a pure number, but multiplied with the appropri-

http://docs.astropy.org/en/stable/units/
http://docs.astropy.org/en/stable/constants/

43

ate unit, namely u.K for the unit K, Kelvin. The solar
radius R� is accessible via the astropy constant mod-
ule, as const.R_sun. Similarly, the Stefan-Boltzmann
constant is const.sigma_sb.

We can also force the program to convert the result to
specific, different units. For instance, the solar radius in
km (instead of m) can be obtained by writing

(const.R_sun).to(u.km)

which returns

695 508 km

The conversion function to is appended to the result (in
this case, enclosed in parantheses); its argument is the
target unit to which the expression is to be converted, in
this case u.km.

If the target unit is not equivalent to the proper phys-
ical unit of the expression, for instance if we try to “con-
vert” a length to Kelvin, we get an error message like
“UnitConversionError: ’m’ (length) and ’K’ (tempera-
ture) are not convertible”.

6.3. Random numbers

Sometimes, you will need random numbers – to pick a
random sample from a larger subset, for instance, or to
randomly place particles at the beginning of a simulation.
The random module in Python provides functions for
this. Once imported with

import random

you have a whole suite of random functions at your dis-
posal. One is

random.random()

which returns a random floating point number x with
0 ≤ x < 1. Scale this up and add an offset to obtain a
random floating point number from any other required
range of values. The function

random.randint(p,q)

returns a random integer i with p ≤ i ≤ q. Finally, to cre-
ate a random subset of k elements from a list thisList,
call

random.sample(thisList,k)

as in the example

In: thisList = range(10)

In: random.sample(thisList,5)
Out: [5, 9, 7, 1, 3]

You can also draw random values from specific probabil-
ity distributions. Notably,

random.gauss(mu,stdDev)

will draw a random number from a Gaussian (nor-

mal) distribution with mean mu and standard deviation
stdDev.

6.4. Strings

Strings are important whenever we are producing text
output, or need to load files following a certain naming
convention. If you want to concatenate strings, you can
just use the plus sign:

In: ’ABC’ + ’def’
Out: ’ABCdef’

A useful tool for building strings out of numbers and
other variables in Python 3 is the format function, which
works as follows: You create a string that includes a
placeholder built from curly brackets. The string is fol-
lowed by .format(), where the parentheses enclose those
variables that are to be substituted for the placeholders.
For example, to insert an integer value into a file name,
you can do this:

In: thisInt = 10
In: ’egon{}.jpg’.format(thisInt)
Out: ’egon10.jpg’

Python sees the placeholders in the string, deduces “ah,
I need to insert a value here” and looks for the variable
whose value is to be inserted among the arguments of the
format function.

There are several useful conventions. If we want to pad
our integer with a certain number of zeroes, do this:

In: thisInt = 10
In: ’egon{:03d}.jpg’.format(thisInt)
Out: ’egon010.jpg’

This tells Python that the integer in question should al-
ways have 3 digits, and if it is too short, python should
add zeroes on the left. To display floating point numbers,
use {:f}:

In: thisFloat=1.51515151515151515
In: ’This is a floating point number: {:f}

(see?)’.format(thisFloat)
Out: ’This is a floating point number: 1.515152

(see?)’

Note that the string only includes 6 decimal places, and
that the final digit has been rounded. If you want more
decimal places, you can tell python like this:

In: thisFloat=1.51515151515151515
In: ’This is a floating point number: {:.9f}

(see?)’.format(thisFloat)
Out: ’This is a floating point number: 1.515151515

(see?)’

For scientific formatting with an exponential, use {:e},

In: thisFloat=151515.1515
In: ’This is a floating point number: {:e}

(see?)’.format(thisFloat)
Out: ’This is a floating point number:

1.515152e+05 (see?)’

44

Also, there is a placeholder that only switches to expo-
nentials for numbers smaller than 10−4:

In: thisFloat=0.0001515
In: ’This is a floating point number: {:g}

(see?)’.format(thisFloat)
Out: ’This is a floating point number: 0.0001515

(see?)’
In: thisFloat=0.00001515
In: ’This is a floating point number: {:g}

(see?)’.format(thisFloat)
Out: ’This is a floating point number: 1.515e-05

(see?)’

All these and many more options are listed in the
Python documentation, for instance for version 3.1 at
[https://docs.python.org/3.1/library/string.html#format-
examples].

From Python 3.6 onwards, there is an even simpler
way of formatting numbers to yield strings, so-called “f-
strings”. Reconsider the last example. We can re-write
it as

In: thisFloat=0.0001515
In: f’This is a floating point number:

{thisFloat:g} (see?)’
Out: ’This is a floating point number: 1.515e-05

(see?)’

The string now has an “f” in front of the quotation
marks, telling Python that this is an f-string in such
an f-string, expressions in curly numbers are interpreted
as formatting instructions. Where previously we had
{:g} and provided the information about the variable
thisFloat via the format function, we now have writ-
ten the variable name directly into the curly brackets, as
{thisFloat:g}. The meaning of alternative formatting
instructions is the same as in the previous examples we
have seen for .9f, e, 03d and similar.

There is one additional thing to keep in mind, since it
might come in handy: Strings can be addressed as lists of
characters, so lots of tricks we will talk about in section
7 when we will have a closer look at lists are applicable
to strings as well.

For instance, if you only want to use the fourth through
sixth character of a string, you would do a slice using
square brackets, as with any list, like this:

In: thisString=’ABCDEFGHIJKLMNOP’
In: thisString[3:6]
Out: ’DEF’

As an astronomical example, we will automatically cre-
ate a URL to download a spectrum from SDSS data
release 8. Each SDSS observation of the type we are
interested in took up to a few hundreds of spectra simul-
taneously. To this end, an aluminium plate was placed
in the telescope’s focal plane, with a pattern of holes
made to measure for the observing field in question. In
each hole, a light-conducting fiber that captures the light
from a specific object, conducting it to a spectrograph.
Since some plates were used more than once, we need also
specify the date of the observation, using the Modified
Julian Date (MJD) common in astronomy. Specifying
plate number, fibre number and date picks out the spec-

trum of a specific object. As the SDSS software evolves,
spectra are sometimes re-analysed, so we need to specify
the number of the reduction run — when the raw data
was sent through a specific software pipeline to yield a re-
duced spectrum, suitable for astrophysics. To retrieve a
specific spectrum from the SDSS server, we need combine
those numbers into a suitable custom URL for download.
We do this following the recipe given by SDSS, as follows:

run2d=26
plate = 1324
mjd = 53088
fiberID = 456
baseURL = ’http://data.sdss3.org/sas/dr8/sdss/’
dirURL=f’spectro/redux/{run2d:d}/spectra/{plate:d}/’
fileURL="spec-{plate:d}-{mjd:d}-{fiberID:04d}"
url=baseURL+dirURL+fileURL+’.fits’

The resulting URL is
http://data.sdss3.org/sas/dr8/sdss/spectro/

redux/26/spectra/1324/spec-1324-53088-0456.fits Try and
paste it into your browser, or click the link!

A simple way to actually do the download, at least on
Mac or Linux computers with curl installed, would be a
system call

from subprocess import call
saveFileName= "spectrum.fits"

call(["curl", "-o", saveFileName, url])

This downloads the file to the working directory, where
it will be saved as “spectrum.fits”.

6.5. Conditions

An important part of what makes coding so versatile
are structures that allow you to let your program make
decisions, based on the available data. For instance, you
could write a script like this:

a=10
if a>1:

print("a is bigger than one!")

which, if you write it in window A and let it run, will
return ”a is bigger than one!” in window C. If, on the
other hand, you set a=0 (or any other value that is not
bigger than one) and run the script, it will not print
anything.

Note that the actions that should happen if he con-
dition is fulfilled, in this case the print statement, are
indented (either by using tab or by putting four blank
spaces in front of it). In Python, such indentation is re-
quired. This is how Python knows that these statement
belong to the “if” block, and are only to be executed if
the given condition is true.

Some decisions involve an alternative: If the condition
is true, do this, if it is not true, do that other thing. This
is what the if. . . else construction is for:

a=0
if a>1:

print("a is bigger than one!")
else:

print("a is not bigger than one!")

https://docs.python.org/3.1/library/string.html#format-examples
https://docs.python.org/3.1/library/string.html#format-examples
http://data.sdss3.org/sas/dr8/sdss/spectro/redux/26/spectra/1324/spec-1324-53088-0456.fits
http://data.sdss3.org/sas/dr8/sdss/spectro/redux/26/spectra/1324/spec-1324-53088-0456.fits

45

Try it! There is an additional keyword called elif, which
allows you to differentiate further. Check, by changing
the values of a, that this little script is indeed telling
people the truth about the variable:

a=0
if a>1:

print("a is bigger than one!")
elif a==1:

print("a is equal to one!")
else:

print("a is smaller than one!")

Note that for the ”a is equal to one” we have used not
the equals-sign = but a double equals sign ==. This is
because a=1 would define a as being equal to one. The
equals-sign, after all, is used to assign values to variables.

6.6. User-defined functions

In many situations, functions will come in handy. If I
need to perform the same operation repeatedly on various
variables, it makes sense to not repeat writing down all
the steps of the operation again, and again, and again.
Instead, we can define a function comprising these steps;
whenever we need to perform the operation, we apply
that function.

For instance, assume that there is a specific polynomial
function

f(x) = 2x2 − x, (12)

which occurs in our analysis again and again. We need to
apply this function first to a variable a, then to a variable
b.

Writing down the polynomial explicitly each time we
need it is rather cumbersome. Instead, we can define a
function using def, and apply that function twice:

def polyFunc(x):
return 2*x**2-x

a=2
b=4
print(polyFunc(a))
print(polyFunc(b))

Write all this down in window A and run it. In window
C, you will see the results

6
28

— our polynomial function applied to a and to b, respec-
tively. Let’s look a bit closer at this. The first two lines
define the function, as

def polyFunc(x):
return 2*x**2-x

The def keyword is followed by the name we have chosen
for the function, in this case polyFunc. After the name,
in parentheses, follows the list of arguments for the func-
tion. Our function will have one argument, which we
have given the internal name x. Then follows the return
statement, which contains what the function will report
back when it is called, in our case the result of what

happens when you insert the argument value into the
polynomial (12).

The block of instructions that is called when defining
a function can be rather long and complex. Here is a
comparatively simple example, which returns the square
root of a positive number, and zero if the argument is
negative:

import numpy as np

def zeroSqrt(x):
if x<0:

return 0
else:

return np.sqrt(x)

print(zeroSqrt(-1))
print(zeroSqrt(4))

If you put this in window A and run it, the result in
window C will be

0
2.0

as expected. Note the two levels of indentation here:
The if and the else are indented because they are part
of the function definition. The two returns are indented
double, because they are subservient to the if and the
else condition, respectively.

Functions can have multiple arguments. The follow-
ing function will return the sum of its three arguments,
specified in parentheses as x, y and z:

def sumOfThreeArgs(x,y,z):
return x+y+z

sumOfThreeArgs(1,20,300)

When executed, this little script will duly return 321.
Functions can also return more complex constructs, such
as lists, tuples or arrays. They can return all types of
variables, or combinations thereof.

There is an alternative way of defining functions, which
allows for more compact scripts at least for simple func-
tions. It uses the keyword lambda, which echo’s math-
ematics’ formal system of lambda calculus (which is a
rather formal and abstract system for describing compu-
tations). The syntax is as follows:

polFunc = lambda x: 2*x**2-x
print(polFunc(2))

This is a one-line-definition for our function: the key-
word lambda, then the variable (or, separated by com-
mas, variables) and to the right what would be the state-
ments following the return keyword. Run this, and it will
dutifully return the value 6.

One general remark: While you can make a function
manipulate existing variables, or make them define vari-
ables that are accessible by the rest of your script after-
wards, I would strongly (!) recommend that you separate
your function cleanly from the rest of your script.

Let the only information the function receives from the
outside be the function arguments. Let the only infor-

46

mation anything else receives from the function be the
object after the return statement.

For professional software, which is typically quite com-
plex and can run into the tens of millions of lines of code,
written by teams of developers, separating the code into
independent sections, each with a well-defined interface
to the rest of the program, is a must.

6.7. Timing your code

Once we get into the realm of more complicated code,
there are occasions when execution time will start to mat-
ter. Programming something in one way, or another, can
make the difference between waiting a few minutes for
your result, or a few hours. Where the differences are
that stark, you are likely to notice them right away.

Should you want to quantify runtime more precisely,
you can use Python’s time module. The function time()
will return the number of seconds that have passed since
an operating-system-specific zero point (in UNIX, Jan-
uary 1, 1970). By calling the function once before and
once directly after a certain point of your script, you can
keep track of what takes how long, for instance:

import time

start_time=time.time()
for ii in range(1000000):

pass
end_time=time.time()

print("This took {}
seconds!".format(end_time-start_time))

Try it once you have read the next section. The difference
in speed between going through the elements of a list and
performing an operation on them on the one hand, and
using the numpy array functionality on the other, is quite
impressive.

7. TAMING LONG DATA SETS: LISTS IN PYTHON

7.1. A list of galaxies

Imagine that we have 9 galaxies. For each galaxy,
we know its brightness. In Python, the list of all these
brightness values can be stored as an object known as,
unsurprisingly, a list. Such a variable has a single name,
just like a variable that only stores a single value.

Evidently, we will need a way of defining the variable
that lets Python know that it is dealing with a list, not
a single value. And once the variable is defined, we will
need a way of retrieving the different list entries individ-
ually. Let’s see how this works using a specific example.

For instance you can define a list with the variable
name galaxy_u like this:

galaxy_u = [23.4, 23.2, 26.8, 24.6, 24.5, 24.3,
23.1, 27.0, 24.0]

In some ways, this looks similar to the way you would
write a list by hand, separating the different items using
a comma. In this case, too, the comma tells the com-
puter where the next item begins. The list as a whole is
enclosed in square brackets.

If you now enter galaxy_u in the IPython console and
press return, you will obtain the whole list:

In: galaxy_u
Out:
[23.4,
23.2,
26.8,
24.6,
24.5,
24.3,
23.1,
27.0,
24.0]

What if you want to retrieve a specific item? Even
though this is not shown explicitly, all the elements in
this list are numbered, starting with zero. Element 0 has
the value 23.4, element 1 has the value 23.2, element 2
the value 26.8 and so on. To retrieve a single element,
simply add the element’s number in square brackets to
the variable name. Like this, as entered in the IPython
console:

In: galaxy_u[2]
Out: 26.8

Ask for the element with index 2, and you get the ele-
ment in the third place of the list (since the first index
is zero). Of course, you don’t need to put a numerical
value in there. It could be any integer variable i, and
galaxy_u[i] would return to you the list element with
the index value i.

You can also apply some basic functions to a list. For
instance, max(galaxy_u) stands for the largest element
of the list, in our case

In: max(galaxy_u)
Out: 27.0

In the same way, you can get the smallest element:

In: min(galaxy_u)
Out: 23.1

Another interesting property is the number of elements
in the list. Use the len function here:

In: len(galaxy_u)
Out: 9

In this case, you can check the answer by hand: yes, this
particular list has 9 entries.

Last but not least, using a procedure called slicing, you
can obtain parts of the list. For instance, galaxy_u[2:5]
will return everything from the element with index 2 up
to and including the element with index 4 = 5 − 1 as a
smaller list:

In: galaxy_u[2:5]
Out: [26.8, 24.6, 24.5]

Leave out the index before the colon, and your sublist
will start with the first element:

In: galaxy_u[:5]
Out: [23.4, 23.2, 26.8, 24.6, 24.5]

47

And, even more useful, if you leave out the index after the
colon, the result will automatically include all elements
up to and including the last list element:

In: galaxy_u[5:]
Out: [24.3, 23.1, 27.0, 24.0]

You can als count off the final included element from the
end, using a minus sign. For instance, this here gives
you everything from the element with index 5 up to end
including the next-to-last element:

In: galaxy_u[5:-1]
Out: [24.3, 23.1, 27.0]

Finally, let us talk about various ways of changing a
list. Appending an additional element to the end of the
list is easy:

In: galaxy_u.append(25.1)
In: galaxy_u
Out: [23.4, 23.2, 26.8, 24.6, 24.5, 24.3, 23.1,

27.0, 24.0, 25.1]

We can also remove the last element from a list. This
is what pop will do: apply pop and the result will be
the rightmost element of the list. But the list itself will
also have been modified: the last element will have been
removed, as we can see when we enter the list’s name
directly after the popping has been completed:

In: galaxy_u.pop()
Out: 25.1
In: galaxy_u
Out: [23.4, 23.2, 26.8, 24.6, 24.5, 24.3, 23.1,

27.0, 24.0]

7.2. Doing something element by element

Oftentimes, you need to apply some function or op-
eration to each list element separately. For instance, in
the case of galaxies from the SDSS catalogue (Sloan Dig-
ital Sky Survey), the u-filter magnitude mu is related
to the flux fu (energy received from the galaxy per unit
frequency interval per unit time per unit receiving area)
as

fu = 3631 · 10mu/(−2.5) Jy. (13)

I am skipping over some complications to keep things
simple, and it doesn’t matter if you have not encoun-
tered the unit “Jansky,” abbreviated Jy, before.27 What
matters is that every value in our list corresponds to a u
magnitude mu, so for every value we want to use formula
(13) to calculate the corresponding flux.

How would we do this in real life? Step by step. We
would take the first list entry, perform the calculation
described in (13), and note down the result. Then we
would do the same with the second list entry, then the
third entry, and so on. In the end, we would have noted
down a list of results. The ith result would be the flux
for the ith magnitude.

27 If you want to read up on the gory details, go to the SDSS
web pages, in particular to their magnitude and flux explana-
tions on [http://www.sdss.org/dr13/algorithms/magnitudes/] and
[http://www.sdss.org/dr12/algorithms/fluxcal/].

If u is some particular magnitude, then from what we
have learned in section 6.1, using the numpy package to
define our mathematical functions, we know that the cor-
responding flux f is given by the formula

f = 3631*np.power(10,u/(-2.5))

There are several ways of performing this operation
with all the elements of a list. The most straightforward
one is close to how we would describe what we want to
do in words: For each element u in the list galaxy_u,
we want to calculate f= 3631*np.power(10,u/(-2.5))
and then put the result in some new list, let’s call it
galaxy_f. This is the actual code:

import numpy as np
galaxy_f=[]
for u in galaxy_u:

f=3631*np.power(10,u/(-2.5))
galaxy_f.append(f)

The first row defines an empty list galaxy_f, which has
no elements and thus is no more than square brackets
enclosing nothing whatsoever. Then, we tell the code
to perform the following (indented) operation for each
element u.

The code will repeat what is in the indented block as
many times as there are elements in our list, each time on
a different element, working its way systematically from
the beginning to the end of the list.

Each time we have calculated the flux f for a particu-
lar element, we append the result to the end of our list
galaxy_f. When the code has successfully performed
the operation on each element of galaxy_u, our result-
ing flux list galaxy_f is complete, and we can have a look
at it in the usual way, by typing in the variable name in
window C. The result is

In: galaxy_f
Out:
[1.5849889868640447e-06,
1.9055758881669273e-06,
6.9187278669245402e-08,
5.2483918075784649e-07,
5.7547471818262932e-07,
6.9187278669245405e-07,
2.0894224124712161e-06,
5.7547471818262931e-08,
9.1206596328112918e-07]

Looking good! There is another way of solving our prob-
lem which can come in helpful, namely using the map
function. For this, we define the operation we are inter-
ested in as a function (cf. section 6.6). map will apply this
function to each separate element of the list, collecting
the results in a new list:

def flux(mag):
return 3631*np.power(10,mag/(-2.5))

galaxy_f = map(flux, galaxy_u)

And there is yet another way of performing this partic-
ular task, namely creating a list from another list. The
construct in question is called a list comprehension. Re-
call the elegant way mathematicians can define sets like

http://www.sdss.org/dr13/algorithms/magnitudes/
http://www.sdss.org/dr12/algorithms/fluxcal/

48

E, the set of all even integers, like this:

E = { 2n | ∀n ∈ Z}

In words, we obtain the set of all even numbers by tak-
ing the double of all elements in the set of Z of inte-
gers. We’ve neatly defined an infinite set using just a
few symbols and a clever convention. List comprehen-
sions in python work just like that (although they cannot,
of course, produce infinite sets). In list comprehension
form, the definition of our list of fluxes is one line:

galaxy_f = [3631*np.power(10,u/(-2.5)) for u in
galaxy_u]

The expression written within the square brackets is eval-
uated for every u in the list galaxy_u. If you only want
results satisfying a certain condition, you can add an if
block at the end. For instance, if we only want to include
galaxies for which u < 25, we could write

galaxy_fb = [3631*np.power(10,u/(-2.5)) for u in
galaxy_u if u < 25]

which results in

In: galaxy_fb
Out:
[1.5849889868640447e-06,
1.9055758881669273e-06,
5.2483918075784649e-07,
5.7547471818262932e-07,
6.9187278669245405e-07,
2.0894224124712161e-06,
9.1206596328112918e-07]

7.3. Operations involving more than one list

More often than not, when we calculate something, it
involves more than one property of an object. Consider
a list st_appV of apparent magnitudes in the V band of
several stars, and a list st_distPc containing each star’s
distance from us in parsec:28

st_appV = [-1.46, 5.2, 3.49, 0.76]
st_distPc = [2.64, 3.5, 3.65, 5.12]

We want to calculate each star’s absolute magnitude,
using the formula relating the apparent magnitude m,
absolute magnitude M , and distance d as

M = m− 5 · log10

(
d

10 pc

)
. (14)

This time, we need to insert not one, but two properties
of the star on the right-hand side: its apparent magni-
tude and its distance. We need to go through two lists
at the same time. How do we do that?

The inelegant way would be to just go through the ele-
ments by calling them directly, using their indices. After
all, the apparent magnitude st_appV[0] and the dis-
tance st_distPc[0] belong to the same star (in this

28 I took these values from the Wikipedia list at the URL
[https://en.wikipedia.org/wiki/List of nearest bright stars] – they
are for Sirius, 61 Cygni A, τ Ceti, and Altair, respectively.

case, to Sirius); analogously, the apparent magnitude
st_appV[1] and the distance st_distPc[1] belong to
the same star (in this case, to 61 Cygni A). Thus, we can
make a for loop of indices like this:

import numpy as np
st_absV=[]
for i in [0,1,2,3]:

thisM = st_appV[i] -
5*np.log10(st_distPc[i]/10.0)

st_absV.append(thisM)

Again, we begin by creating an empty list st_absV.
Then, we let i take on all of the index values of the
lists st_appV and st_distPc, one after the other. For
each index value, we fetch the appropriate items from
each list and combine them as required by the formula
(14).

There is one thing that is particularly awkward about
this solution, and that is writing out the index values
[0,1,2,3] by hand. Once we get to longer lists, this will
no longer work; also, what about cases where we do not
know, beforehand, how long the lists we are processing
will be?

The solution is the function range. With a single in-
teger argument n, it produces a list with n values, con-
taining integer values from 0 to n− 1, for instance:

In: range(5)
Out: [0, 1, 2, 3, 4]

With two arguments, you can make the list begin with a
value other than zero:

In: range(2,5)
Out: [2, 3, 4]

Combined with the length function, which gives you the
number of elements in a list, we can use range to make
sure our for-loop runs over all the elements in the list
st_absV, which is of course the same number of elements
as in st_distPc. The result is

import numpy as np
st_absV=[]
for i in range(len(st_appV)):

thisM = st_appV[i] -
5*np.log10(st_distPc[i]/10.0)

st_absV.append(thisM)

Using list comprehensions, we can again make this oper-
ation much shorter and simpler. In list comprehension
form, we only need to write

import numpy as np
st_absV = [m - 5*np.log10(d/10.0) for m,d in

zip(st_appV,st_distPc)]

The difference is now there are two variables, m and d,
in the for loop. The secret is in the zip. Think about
closing an ordinary zipper, e.g. about zipping your bag.
Where before, there were two separate rows of teeth, zip-
ping combines these rows, so in the closed zipper, there is
one tooth from the left side, then one from the right side,
and so on. The zip function is somewhat similar. Where,

https://en.wikipedia.org/wiki/List_of_nearest_bright_stars

49

initially, we have two lists, st_appV and st_distPc, zip
combines these into a single list where each entry has two
values. Assume that the initial lists are

lst_appV = [-1.46,5.2,3.49,0.76]

and

lst_distPc = [2.64,3.5,3.65,5.12].

You should think about these lists as listing different
properties of the same astronomical objects. The first
list contains the visual brightness V of each object. The
second list contains each object’s distance from us, in
parsec. So, for instance, the first object in question has
visual brightness −1.46 and is at a distance of 2.64 parsec
from us, the second object has visual brightness 5.2 and
is at a distance of 3.5 parsec from us, and so on. If we
now apply the zip command, the two lists are combined
as follows:

In: zip(st_appV,st_distPc)
Out: [(-1.46, 2.64), (5.2, 3.5), (3.49, 3.65),

(0.76, 5.12)]

Again we have a list with one entry for each object. But
now that entry is itself a list-like entity: For the first
object, that list-like entity contains first that object’s
visual brightness -1.46, and in second place the object’s
distance in parsec, 2.64.

In Python, the objects that look like little lists, but
have round instead of square brackets, are called tuples.
Lists are mutable – as we have seen, once a list is created,
you can remove items, or append items, changing the
number of items in the list. Tuples, once defined, need
to stay the same length. Python allows for assignments
like this, mixing tuples (or lists, for that matter) and
ordinary variables:

m, d = (-1.46, 2.64)

Here, m and d are ordinary variables, each capable of stor-
ing a single values, while on the right-hand side, there is
a tuple. Two ordinary variables on the left, a tuple with
two values on the right — that makes for an unambiguous
assignment. After this assignment, the variable m holds
the value −1.46 while the variable d holds the value 2.64.

With this background information, the list comprehen-
sion version of our calculation is straightforward to un-
derstand: With zip, we transformed our two lists, one
with all the apparent magnitudes, the other with all the
distances, into a single list of tuples. Each of the tuple
entries consists of two items: the apparent magnitude of
a single star and its distance.

The for loop iterates over all these tuples, one for each
star, and for each star we assign to m that star’s appar-
ent magnitude, to d that star’s distance. Then we use
both m and d in the formula for calculating the absolute
magnitude.

While our example has used two lists, the zip works
with any number of lists. For fun, we can try combining
the list for the apparent magnitude, the list of distances,
and the list of absolute magnitudes that we have just
produced:

In: zip(st_appV,st_absV,st_distPc)
Out: [(-1.46, 1.431980365650845, 2.64),
(5.2, 7.4796597782486227, 3.5),
(3.49, 5.6785356777176261, 3.65),
(0.76, 2.213650195120846, 5.12)]

Again we have produced some kind of master list, with
one entry per star, but this time each entry is a tuple
with three items: first, the star’s apparent magnitude,
second, its absolute magnitude, and third, its distance in
parsec. We can use zip to, well, zip together any number
of lists — as long as all these lists each have the same
length.

7.4. Creating lists simultaneously

In the previous section, we have used tuples, and zip,
to create a list that depended on two, three, or any other
lists. We can use those same tools to create several lists
simultaneously. The simplest application is that we have
several lists referring to the same objects — the first en-
try in each list refers to one specific object, the second
entry in each list to the second object, and so on —
and that we want to filter these lists according to some
criterion. As an example, consider these three lists that
contain catalogue numbers, distances (in parsec) and red-
shifts z for several galaxies:29

nm = [’SDSS-II SN 21387’,’SDSS-II SN
13651’,’SDSS-II SN 03706’,’SDSS-II SN
10963’,’SDSS-II SN 03475’]

dpc=[4200.,1700.,3720.,577.,1040.]
zv=[0.48,0.25,0.44,0.09,0.3]

On this basis, our goal is to create three new lists, call
them nmN and dpcN and zvN, which contain only those of
the galaxies with a redshift greater than z = 0.26.

Let us try a workable but somewhat wordy code first:
iterating over the (common) index values for these lists,
filtering accordingly, and filling up our new lists by ap-
pending each suitable value. This can be achieved by

nmN=[]
dpcN=[]
zvN=[]
for i in range(len(nm)):

if zv[i] > 0.26:
nmN.append(nm[i])
dpcN.append(dpc[i])
zvN.append(zv[i])

In the end, we have three new lists, containing the values
for those three of the five galaxies that meet our criterion:

In: nmN
Out: [’SDSS-II SN 21387’, ’SDSS-II SN 03706’,

’SDSS-II SN 03475’]
In: dpcN
Out: [4200.0, 3720.0, 1040.0]
In: zvN
Out: [0.48, 0.44, 0.3]

29 The galaxies are taken from NASA’s extragalactic data base
(NED), specifically its list of redshift-independent distances for
galaxies, https://ned.ipac.caltech.edu/Library/Distances/

https://ned.ipac.caltech.edu/Library/Distances/

50

But once more, there is a more elegant solution using a
list comprehension:

nmN,dpcN,zvN = zip(*[(n,d,z) for n,d,z in
zip(nm,dpc,zv) if z> 0.26])

The expression zip(nm,dpc,zv) again zips the three
lists into a single list where each item is a tu-
ple containing that galaxy’s name, distance and red-
shift. For instance, the first tuple in that list is
(’SDSS-II SN 21387’, 4200.0, 0.48) combining the
three properties of the first galaxy. For each iteration —
where we look up n,d,z for one particular galaxy — we
do not calculate a single result, but instead tell Python
to add a tuple n,d,z to the list of results. The last part
with the condition makes sure that this only happens if
our condition is met, that is, if z > 0.26. The combina-
tion zip(* [. . .]) inverts the zipping. Before we applied
this combination, we were still dealing with a single list,
containing one tuple per galaxy:

In: [(n,d,z) for n,d,z in zip(nm,dpc,zv) if z>
0.26]

Out: [(’SDSS-II SN 21387’, 4200.0, 0.48),
(’SDSS-II SN 03706’, 3720.0, 0.44),
(’SDSS-II SN 03475’, 1040.0, 0.3)]

The zip function combined with the star operation unzips
this object and returns three tuples, the first of which
contains all the galaxy names, the second all the galaxy
distances, and the third all the galaxy redshifts:

In: zip(*[(n,d,z) for n,d,z in zip(nm,dpc,zv) if
z> 0.26])

Out: [(’SDSS-II SN 21387’, ’SDSS-II SN 03706’,
’SDSS-II SN 03475’),

(4200.0, 3720.0, 1040.0),
(0.48, 0.44, 0.3)]

If we assign this expression to three variable names, sep-
arated by comma, Python automatically assigns the first
tuple to the first variable, the second tuple to the second
and so on:

nmN,dpcN,zvN = zip(*[(n,d,z) for n,d,z in
zip(nm,dpc,zv) if z> 0.26])

If we now call up the variables on the left-hand side,
separately, we can see that each now contains one of the
tuples. For instance, nmN now contains the three names
of those galaxies that fulfil our condition z > 0.26:

In: nmN
Out: (’SDSS-II SN 21387’, ’SDSS-II SN 03706’,

’SDSS-II SN 03475’)

Is it important that we now have tuples where before we
had lists? For many purposes, tuples will be fine, and we
can just use the resulting tuples. If we want to convert
these tuples back to lists, the function list, combined
with the map function (which we encountered in section
7.2, p. 47) can help:

nmN,dpcN,zvN = map(list, zip(*[(n,d,z) for n,d,z
in zip(nm,dpc,zv) if z> 0.26]))

map will apply the function list, which converts a tuple
into a list, to each separate tuple, and as a result, we
obtain three lists, for instance

In: nmN
Out: [’SDSS-II SN 21387’, ’SDSS-II SN 03706’,

’SDSS-II SN 03475’]

7.5. Numpy arrays

Central to the numpy module is a versatile structure
called an array, which is similar to a list but has several
nice extra properties. For instance, if we want to create
a new array out of several old ones, we can write the
formula in question in exactly the same way we would
write it for a simple, non-list variable. In order to define a
numpy array from scratch, we define a list and transform
that list into an array as follows:

import numpy as np
a = np.array([1.0,2.0,3.0,4.0])

If we want an array in which each value is twice than it
was for our original array, simply write

b=2*a

and the array b will now contain the values 2,4,6 and 8.
All arithmetic with numpy arrays is element-wise: Apply
functions, exponentiate, add, subtract, multiply — all
this will be done as if you were to apply these operations
to each element in the array, and corresponding elements
in whatever additional arrays are involved. For instance,
with the definitions above,

In: b+1.5*a
Out: array([3.5, 7. , 10.5, 14.])

In order to calculate the first element of the array of
results, python will take the first element of b and add
1.5 times the first element of a. This is repeated for the
second elements, and so on until the operation has been
performed with all elements of the arrays involved.

7.6. Variable types, lists, arrays and speed

We have not looked at different types of variables
much, so far. We didn’t have to — Python as a pro-
gramming language is “dynamically typed,” assigning a
specific type to a variable at the moment we assign a
value to that variable, with no need to declare the type
beforehand. If we assign an integer to the variable a,
then that variable will be an integer variable. If we as-
sign a string to a, then from that moment on, a will be a
string variable (until we possibly change its type again).

In: a = ’I am a string’
In: type(a)
Out: str
In: a = 1
In: type(a)
Out: int

This flexibility comes at a price, in particular for list op-
erations. One and the same list can contain an integer,

51

a string, a floating point number, another string and so
forth. Python needs to carry along the information about
what is what, and about which operations can be applied
to which list element. This comes at a price; list opera-
tions are slower in Python than in a language where you
need to declare variable types explicitly, beforehand.

A simple one-dimensional numpy array, on the other
hand, can only contain variables of the same type. (If
you try to fill it with, say, a floating point number and
an integer, it will choose the array type to accommodate
all these values at the same time — in this case, it would
become an array of floating point numbers.) You can
also force an array to have a specific type, by using the
dtype keyword. e.g. in

floatArray = np.array([1, 2, 3, 4],
dtype=’float32’)

That uniformity is one reason why numpy array opera-
tions are typically much faster than list operations. The
following program takes a list or array consisting of the
first million integers and doubles each element:

import time
import numpy as np
numberlist=[ii for ii in range(1000000)]
numberarrIt = np.array(numberlist)
numberarr = np.array(numberlist)
start_time=time.time()
for ii in range(len(numberlist)):

numberlist[ii] = 2*numberlist[ii]
end_time=time.time()
print("List took {:.4g}

seconds!".format(end_time-start_time))
start_time=time.time()
numberarr = 2*numberarr
end_time=time.time()
print("Array took {:.4g}

seconds!".format(end_time-start_time))

On running this code, I find that the list operation takes
0.15 seconds, the array operation a mere 0.0012 seconds
— a factor hundred less! (The exact values can vary
from machine to machine, and from run to run.) If you
are analysing (or simulating) a lot of data, that factor
hundred (or whatever it turns out to be in that particular
context) can make a substantial difference.30

7.7. Strings and base n numbers as lists

Variables of different types can be transformed into
each other. As a non-trivial example, we consider object
IDs for the SDSS survey. These are long numbers to
begin with; every object that has been identified in
a data release of the SDSS has a unique object ID,
and every object for which a spectrum has been taken
has a spectral object ID, specObjID. Consider the
object with the spectral object id 1490816872793270272,
which is an elliptical galaxy. For a quick look,
use the SDSS DR8 (data release 8) object explorer at
[http://skyserver.sdss.org/dr8/en/tools/explore/obj.asp].
Go to Search by SpecObjId in the menu on the left

30 Additional information about data types can be found in
[https://jakevdp.github.io/PythonDataScienceHandbook/02.01-
understanding-data-types.html].

to call up our object and see an image, spectrum and
helpful information.

The DR8 glossary, entry “specObjID”, states that the
specObjId is a 64 bit number, and that the various bits
contain information, namely from left to right, starting
with index zero:

Bits Name Meaning

0–13 plate number of spectroscopic plate
14–25 fiberID number of the glas fiber posi-

tioned over the object
26–39 MJD modified Julian date minus

50000 when observation was
made

40–53 rerun2d reduction run number
54–63 only zeros – no meaning

How can we extract the information contained in that
long number? We begin by putting the specObjID into a
suitable variable, and transform that to a binary number,
using the function bin:

specObjID = 1490816872793270272
binVersion=bin(specObjId)

If you look at binVersion directly, you can see it is actu-
ally a string:

In: binVersion
Out: ’0b101001011000001110010000011000
0010000000000000110100000000000’

(You will likely see this without the line break, but that’s
the limitation of type-setting this script.) Let’s see how
we can transform this into an ordinary integer. The ‘0b’
in the beginning indicates that what follows is a binary
number. Let’s get rid of it by treating the string like a
list of characters and slicing:

In: bin(specObjId)[2:]
Out: ’10100101100000111001000001100000
10000000000000110100000000000’

If you count, e.g. using the len() function, you will see
those are only 61 bits. The conversion leaves out any
leading zeros. To restore them, we can use the zfill func-
tion:

In: bin(specObjId)[2:].zfill(64)
Out: ’00010100101100000111001000001100
00010000000000000110100000000000’

This adds leading zeros so that, altogether, we have 64
bits. The plate number is encoded in the first 16 bits.
Just as with a list, we can take the appropriate slice:

In: binVersion = bin(specObjId)[2:].zfill(64)

In: binVersion[0:16]
Out: ’0001010010110000’

Now, if we use the int function, specifying base 2 as an
extra argument, we can convert this into an ordinary
integer:

http://skyserver.sdss.org/dr8/en/tools/explore/obj.asp
https://jakevdp.github.io/PythonDataScienceHandbook/02.01-understanding-data-types.html
https://jakevdp.github.io/PythonDataScienceHandbook/02.01-understanding-data-types.html
http://www.sdss3.org/dr8/glossary.php#S

52

In: int(binVersion[0:16],2)
Out: 5296

That is indeed the object’s plate number, written as an
integer, as you can confirm by looking at the object ex-
plorer. Fiber number, Julian date and the additional
information contained in the object id can be extracted
in an analogous fashion.

8. BASIC PLOTTING WITH PYTHON AND
MATPLOTLIB

Plots and diagrams are helpful tools for making sense
of a given data set. We have already seen some exam-
ples in section 2.7, and seen how to make use of TOP-
CAT for the purpose in sections 4.7. Now, it’s time to
learn how to do the same in Python. For this, and all
our subsequent plotting needs, we use the sub-module
matplotlib.pyplot. The basic setup is very simple, as
follows. We import the submodule like this:

import matplotlib.pyplot as plt

8.1. Plotting a function

In order to plot something, we need lists of x and y
values. In this piece of script, we use np.linspace to cre-
ate a set of 200 points, evenly distributed between (and
including) the points 0 and 2π:

import numpy as np
x = np.linspace(0,2*np.pi,200)

Recall that the nice thing about numpy arrays is that
you can write down element-wise operations just using
the array variables themselves. Thus,

y = np.sin(x)

calculates the sine function for each element of x and
stores all the resulting values in the array y. The most
simple plot, involving two lists or arrays, works like this:

plt.clf()
plt.plot(x,y)

Strictly speaking, the plt.clf() is not necessary here. It
clears all figures or figure elements you might have plot-
ted, or specified, beforehand. I usually start my figures
that way, just to be on the safe side. The plot func-
tion gets two arguments in this case: a list with x values
and one with y values. Both lists need to have the same
length. The result is the plot shown in Fig. 82.

8.2. Making a plot look better

There are many ways that a plot like the last one can
be made to look better. For instance, we can introduce
axis names, like this:

plt.clf()
plt.xlabel(’Time in seconds’)
plt.ylabel(’Pendulum angle [arbitrary units]’)
plt.plot(x,y)

0 1 2 3 4 5 6 7
1.0

0.5

0.0

0.5

1.0

Fig. 82.— Plotting a sine function with matplotlib

Also, the coordinate region that is shown goes towards
slightly bigger x values than necessary — on the right-
hand side, the curve is hanging in the air. In the y direc-
tion, on the other hand, we could use a bit more space,
since the curve is touching the axis box, and that makes
the regions near the maxima and minima less easy to
see. We solve both problems by explicitly setting the
xlim and ylim ranges, stating both the lowest and the
highest value:

plt.clf()
plt.xlabel(’Time in seconds’)
plt.ylabel(’Pendulum angle [arbitrary units]’)
plt.xlim(0,2*np.pi)
plt.ylim(-1.1,1.1)
plt.plot(x,y)

The resulting curve, with custom range and axis names,
can be seen in Fig. 83. That’s better.

0 1 2 3 4 5 6

Time in seconds

1.0

0.5

0.0

0.5

1.0

P
e
n
d
u
lu

m
 a

n
g
le

 [
a
rb

it
ra

ry
 u

n
it

s]

Fig. 83.— Sine curve with custom range and proper axis names

We can make a bewildering number of additional
changes. (Of course, it is a sign of plotting maturity
when those options are used sparingly, and only when
they are in the service of helping the figure’s readibility.)
Here is an example where we have changed the line color,
line width, and line style for our curve:

53

plt.clf()
plt.xlabel(’Time in seconds’)
plt.ylabel(’Pendulum angle [arbitrary units]’)
plt.xlim(0,2*np.pi)
plt.ylim(-1.1,1.1)
plt.plot(x,y,’r’,lw=3.0,linestyle=’dashed’)

The result can be seen in Fig. 84. The changes we

0 1 2 3 4 5 6

Time in seconds

1.0

0.5

0.0

0.5

1.0

P
e
n
d
u
lu

m
 a

n
g
le

 [
a
rb

it
ra

ry
 u

n
it

s]

Fig. 84.— Sine curve with different color, line width, and line
style

have made here: specified the colour ’r’, which is
red; used the “lw” for line width option to set the
line width, and set the linestyle to ’dashed’ (instead
of, say, ’dotted’). Colour conventions can be found
on [https://matplotlib.org/users/colors.html] — in most
situations, it suffices to know that blue, green, red, yel-
low, cyan, magenta and white can be called up using
their initial letters, while black is ’k’.

8.3. Annotating plots

Sometimes, we want to add straight lines to our plot,
to show where certain x or y values are located. This can
be done using the axvline and axhline commands, to add
a vertical and horizontal line, respectively. As default
argument, the vertical line takes a single x value, and
the horizontal line a single y value. Here, we have given
the lines two different colors, as well:

plt.clf()
plt.xlabel(’Time in seconds’)
plt.ylabel(’Pendulum angle [arbitrary units]’)
plt.axhline(0.0,color=’g’)
plt.axvline(0.5*np.pi,color= ’m’)
plt.xlim(0,2*np.pi)
plt.ylim(-1.1,1.1)
plt.plot(x,y)

The result is shown in Fig. 85. Note that, unlike for the
function plot, where we could add the line color informa-
tion by just specifying the color, for axhline and axvline
we need to state explicitly color=’g’. Similar explicit
keywords are needed for other specifications, e.g. for the
linewidth.

We can also add annotations to a plot: an arrow point-
ing to some particular feature. The command for this is

0 1 2 3 4 5 6

Time in seconds

1.0

0.5

0.0

0.5

1.0

P
e
n
d
u
lu

m
 a

n
g
le

 [
a
rb

it
ra

ry
 u

n
it

s]

Fig. 85.— Sine curve with horizontal and vertical lines added

“annotate”, and it works as follows:

plt.clf()
plt.xlabel(’Time in seconds’)
plt.ylabel(’Pendulum angle [arbitrary units]’)
plt.axhline(0.0,color=’g’)
plt.axvline(0.5*np.pi,color= ’m’)
plt.annotate(’intersection!’, xy=(np.pi, 0),

xytext=(4, 0.3),fontsize=12)
plt.xlim(0,2*np.pi)
plt.ylim(-1.1,1.1)
plt.plot(x,y)

The result is shown in Fig. 86. The command annotate

0 1 2 3 4 5 6

Time in seconds

1.0

0.5

0.0

0.5

1.0

P
e
n
d
u
lu

m
 a

n
g
le

 [
a
rb

it
ra

ry
 u

n
it

s]

intersection!

Fig. 86.— Sine curve, with vertical and horizontal lines, and
annotated

has added an annotation. The string argument is the text
to be displayed. The xy tuple specifies the coordinate
point for where the arrow points, the xytuple where the
annotation text should be displayed. The fontsize option
gives the size of the font used, in points; you can add this
option to pretty much any function which displays text.
The arrowprops option specifies the type of arrow to be
used. If you leave out the arrow, you can use annotate
just to place text somewhere in your diagram, without
the arrow.

https://matplotlib.org/users/colors.html

54

8.4. Figure size

You can change the size of your whole figure by setting
the figsize property, like this:

plt.clf()
plt.figure(figsize=(4,2))
plt.xlabel(’Time in seconds’)
plt.ylabel(’Pendulum angle [a.u.]’)
plt.xlim(0,2*np.pi)
plt.ylim(-1.1,1.1)
plt.plot(x,y)

Both width and height are given in inches and are as-
signed to the figsize option. In this case, the figure would
be twice as wide as it is high. Fig. 87 shows the same

0 1 2 3 4 5 6

Time in seconds

1.0

0.5

0.0

0.5

1.0

P
e
n
d
u
lu

m
 a

n
g
le

 [
a
.u

.]

Fig. 87.— Figure with figsize=(6,2)

principle for figsize=(6,2). Note that font sizes do
not scale with figure size. If you make your figsize larger,
text labels and axis labels will be smaller relative to the
overall size of the figure.

8.5. Scatter plots

Next, let us take 5 galaxies, values for their distance
to Earth in Mpc and their redshift values. (I will use the
same which already made their appearance values earlier
in section 7.4.) We begin once more by defining lists
containing the galaxy’s names, distances and redshifts.

nm = [’SDSS-II SN 21387’,’SDSS-II SN
13651’,’SDSS-II SN 03706’,’SDSS-II SN
10963’,’SDSS-II SN 03475’]

dpc=[4200.,1700.,3720.,577.,1040.]
zv=[0.48,0.25,0.44,0.09,0.3]

Let us create a Hubble diagram, in our case plotting
redshift values on the x axis and distance values on the
y axis. Since these are separate data points, it does not
make sense to join them with a line. Instead, we will plot
the data points as separate markers, using the scatter
function:

plt.clf()
plt.scatter(zv,dpc)

The result can be seen in Fig. 88. Again there
are several possibilities to make this look nicer and
more readable. For instance, you can use the option
s to change the size of your markers, or color to
change their color, and marker to change the shape
of the marker (all possible shapes can be found in
[https://matplotlib.org/api/markers api.html]). Fig. 89

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
500

1000

1500

2000

2500

3000

3500

4000

Fig. 88.— Simple Hubble plot

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
500

1000

1500

2000

2500

3000

3500

4000

Fig. 89.— Simple Hubble plot with custom red triangle data
points

is a scatter plot with red triangle markers with an area
(size) of 40 square points, coded as

plt.clf()
plt.scatter(zv,dpc,marker=’^’,s=40,color=’r’)

We can also use marker attributes such as color, size or
shape to carry information. If we make the color, or the
size, an array with the same length as our data set, we
can set values individually for each data point. We have
already seen examples for this practice in section 2.7 in
figures 31 and 32. Here is a programming example, ex-
tending our previous diagrams, for using varying marker
area (governed by the size option s). The sizes are chosen
arbitrarily and, in this particular case, convey no more
information than showing you how this kind of option
works:

sizes = [40,15,25,80,38]

plt.clf()
plt.scatter(zv,dpc,s=sizes)

Remember that the values for the size correspond to
the area, not the diameter. Doubling the value will not
double the diameter. The resulting diagram, with each

https://matplotlib.org/api/markers_api.html

55

marker with its own specific size as we specified in the
sizes array, can be seen in Fig. 90.

0.1 0.2 0.3 0.4 0.5
500

1000

1500

2000

2500

3000

3500

4000

Fig. 90.— Hubble plot with (arbitrarily) varying marker sizes

Last but not least, it is also possible to plot a scatter
diagram using the plot function. Instead of the colour,
you specify a data marker shape, in this case circles:

plt.clf()
plt.plot(zv,dpc,’o’)

8.6. Fitting data

The Hubble-Lemâıtre relation is supposed to be linear
— for distant galaxies, redshifts z and distances d are
supposed to be related by

z = H0/c · d, (15)

with H0 the Hubble constant and c the vacuum speed
of light. Our galaxy dots, each representing a galaxy’s
redshift and distance, do not quite fall on a single line.
So what is the line that fits these data point best?

To find out, we use the function polyfit from the
numpy module.

dpc=[4200.,1700.,3720.,577.,1040.]
zv=[0.48,0.25,0.44,0.09,0.3]

import numpy as np

popt = np.polyfit(zv, dpc,1)

The result is

In: popt
Out: array([9560.54352268, -735.48957908])

We have told the polyfit function that we want to fit
the data points given by zv as x values and dpc as y val-
ues with a polynomial of degree 1 (the third argument
we passed to the function), which is to say, with a linear
function y = a · x + b. As a result, the function has re-
turned its best estimates for the coefficient a of the first-
order term, namely a = 9560, and for the zeroth-order
(that is, constant) term b = −735.5 (albeit with more
digits than I have reproduced here). The proportionality

factor corresponds to a value for the Hubble constant of

H0 = 31.4
km/s

Mpc
, (16)

which is rather different from the best current values
close to 70 km/s/Mpc. Can our statistical error explain
the discrepancy? To find out, we re-run the fit with an
additional option, namely as

popt,pcov = np.polyfit(zv,dpc,1,cov=True)
perr = np.sqrt(np.diag(pcov))

By setting cov=True, we tell the function to return not
only its estimates, but also the associated covariance ma-
trix. Taking the square roots of the diagonal of that ma-
trix gives us estimates for the errors of the parameters.
For the parameter a, we obtain a = 9560± 2321, so our
Hubble constant estimate comes with an error

H0 = (31.4± 7.6)
km/s

Mpc
, (17)

so definitely not enough to explain the discrepancy. We
can plot the corresponding straight line of our best fit in
our diagram, cf. Fig. 91.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Redshift z

1000

0

1000

2000

3000

4000

5000

D
is

ta
n
ce

 i
n
 M

p
c

Fig. 91.— Hubble diagram, with the best-fit line shown

On the other hand, from the basic definition of scale-
factor expansion, we know that the relation we should
be fitting is not y = ax + b, but rather y = ax, since
there is no offset in the Hubble-Lemâıtre relation. Let
us program this new version of our fitting function by
making use of curve_fit, which is part of the SciPy
library, as follows:

dpc=[4200.,1700.,3720.,577.,1040.]
zv=[0.48,0.25,0.44,0.09,0.3]

from scipy.optimize import curve_fit

def fitFunc(x,a):
return x*a

popt, pcov = curve_fit(fitFunc, zv, dpc)
perr = np.sqrt(np.diag(pcov))

As you can see, there is now an additional step, namely
that we have to define the function we want to fit to

56

our data; I have called it fitFunc. When we want to fit
data to a more general function f(x), that function will
contain free parameters a, b, c, . . . whose values will then
need to be fixed by the fitting procedure. In defining our
function, we need to make sure that x is the first argu-
ment, followed by any free parameters in our function.
In our specific case, we only have a single free parame-
ter, a. As you can see, curve_fit has three input slots:
the first is for our pre-defined fit function, the second for
the array of x data and the third for the array of y data.
Even without setting an extra option, curve_fit will re-
turn the covariance matrix, so we assign the result to the
tuple popt, pcov. In popt we will, once more, find the
best-fit values for our free parameters, arranged in an ar-
ray. From the covariance matrix, the square roots of the
diagonal elements, here extracted as \perr, allow us to
extract the associated statistical errors. In our particu-
lar case, the result is a = 7597.89598735± 932.90257718,
corresponding to

H0 = (39.5± 4.8)
Mpc

km/s
.

Evidently, the discrepancy is due to something else — to
our particular selection of galaxies, perhaps, or to errors
in the distances. Nothing we can resolve here, but along
the way, we have learned several ways of how to fit a
curve to data.

8.7. Histograms

Finally, let’s make a histogram. Let’s couple that with
an illustration of one of the most important statistical
theorems: the central limit theorem. Let us use
numpy’s random function to create an array of random
numbers:

import numpy as np
randArray = np.random.rand(10000)

The simplest way of turning this into a histogram is mat-
plotlib’s hist function,

plt.clf()
plt.hist(randArray,bins=30)

whose result can be seen in Fig. 92. The argument
“bins=30” indicates that we want the histogram to have
30 bins. The default bin number is 10. The histogram
has no clear structure; as we would expect, all values
are of similar frequency, around the expectation value
10000/30 ≈ 330, but with random fluctuations above
and below that value.

Next, let us define our random array a bit differently.
This time, we add two random arrays, so that each num-
ber in the resulting array is now the sum of two random
numbers.

import numpy as np
randArray =

np.random.rand(10000)+np.random.rand(10000)

The resulting histogram can be seen in Fig. 93. Now,
the histogram has a maximum in the middle, near 1,
and smaller and larger values are less common. This is
straightforward to understand if you look at, say, the

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

350

Fig. 92.— Histogram for our array of random numbers

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

100

200

300

400

500

600

Fig. 93.— Histogram for our array of sums of two random num-
bers

sums of the integers between 1 and 5. There is only one
way to obtain the 10, namely 5+5. But there are several
ways to obtain 5: 4+1, 3+2, 2+3, 1+4. An outcome near
the middle of the set is more likely.

We can repeat the exercise by regarding sums over
more and more random numbers. Fig. 94 shows the his-
togram for a random array where each element is the
sum of twenty random numbers. Does the shape look
familar? This is looking more and more similar to a nor-
mal (Gaussian) distribution, and that is no accident. In
fact, that is what the central limit theorem says for a
situation like this, where each of the quantities we doc-
ument is the sum of many random variables, all drawn
from the same probability distribution (which must have
some additional properties such as finite variance): as the
number of terms in the sum grows, the resulting distribu-
tion comes ever closer to a normal distribution. This is
why normal distributions are so useful: In physics (and
astronomy), there are typically many small fluctuations,
many different sources of error. Those different errors
will add up to influence the sought-for result. As long as
those fluctuations, and associated errors, are reasonably
independent of each other, then similar to what hap-
pens in the central limit theorem, the distribution for

57

6 8 10 12 14
0

200

400

600

800

1000

Fig. 94.— Histogram for our array of sums of twenty random
numbers

measurement results is likely to come close to a normal
distribution.

The np.random sub-module also provides for spe-
cific probability distributions for us to draw sam-
ples from, and several of those functions allow us
to draw samples from normal distributions. Every
normal distribution is defined by its mean (where
its maximum is) and its standard deviation (defin-
ing the width of the distribution). The function
np.random.normal(mu, sigma, 1000) will return an
array of 1000 samples for a normal distribution whose
mean is the value of the variable mu and whose standard
deviation is the value of sigma. We choose a different
way, namely the function randn, which automatically
draws the sample from the so-called standard normal
distribution, which has mean 0.0 and standard deviation
1.0:

import numpy as np
gaussDraw =np.random.randn(100000)

We can plot a histogram for our sample, choosing a suit-
able number of bins:

plt.clf()
plt.hist(gaussDraw,bins=40)

The resulting histogram is shown in Fig. 95. In closing,
we note that it is also possible to draw two-dimensional
histograms — either as 3D objects (drawn in perspec-
tive), or else using colour to express column height. An
example for the latter version can be found in section 9.3.

8.8. Saving figures

After you have drawn a figure with matplotlib, you can
save it by adding the line

plt.savefig(’thisIsAFilename.pdf’,bbox_inches=’tight’)

to your code. The string ’thisIsAFilename.pdf’ may,
of course, be replaced by any other string, or string-
valued variable.

The file type is determined by the file extension. In
this case, a pdf file is created. Other types, such as png

4 2 0 2 4
0

1000

2000

3000

4000

5000

6000

7000

8000

Fig. 95.— Histogram of 100000 values randomly drawn from a
normal distribution

or jpg, are possible. Resolution for pixel-based formats
can be set using the option dpi=300 for 300 dots per
inch, or similar. The bbox_inches=’tight’ makes sure
the figure fits itself nicely into the allotted space.

8.9. Glueing data sets

In TOPCAT, in section 4.5, we encountered subsets
as an easy method to identify certain subsets interac-
tively and explore their properties. To this end, the soft-
ware, “glued different diagrams together,” identifying the
different subsets in a consistent way in histograms and
plots. In Python, we can program such functionality ex-
plicitly, setting criteria for the different subsets, sorting
them into different arrays, and plotting the results in the
histograms and diagrams we need.

That would be a matter of coding the distinctions we
make, and the visualisations. But in a number of situ-
ations, having an interactive way to select subsets from
data, and then have that selection represented simulta-
neously in the relevant histograms and diagrams, is much
easier than explicit programming.

I will not go into this issue here, but for anyone inter-
ested, I recommend having a look at the Glue library at
[https://glueviz.org], which provides this kind of interac-
tive functionality.

9. IMPORTING TABLE DATA INTO PYTHON

In all previous examples, we have used data that was
written directly into the script. In most realistic cases,
the data will instead be contained in a file of some type.
Thus, opening files and reading in data is an important
scripting skill. As we have seen (and explored with TOP-
CAT!) higher-level astronomical data often comes in the
form of tables, where each row represents a specific ob-
ject, and each column a type of property. For this kind of
data, Python provides a table format, which is basically
an array with additional meta-information thrown in.

9.1. Opening a FITS table in python

Let us begin with FITS tables. We have already en-
countered the FITS format as a means to encode not
only images, but tables, in section 4.1. Let us use open
the same Galaxy Zoo FITS file table zoo2MainSpecz.fits
we downloaded back then, and open it in Python:

https://glueviz.org

58

from astropy.io import fits
hdulist = fits.open(’zoo2MainSpecz.fits’)

As we have seen before, FITS files in general can have a
rather complex structure. They can consist of multiple
“header/data units”, HDUs in short, where the data can
be an image or a table or another type of array, and the
corresponding header contains meta-information about
the data. The hdulist variable now contains all the
HDUs of this particular FITS file. Call its associated
function, “index”, and you will get a brief table of con-
tents:

hdulist.info()
Filename: zoo2MainSpecz.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 16 (19741,) uint8
1 Joined BinTableHDU 480 243500R x 233C

[K, K, K, E, E, 11A, 11A, 20A, 20A, I, I, I,
E, E, E, E, I, I, E, E, E, E, I, I, E, E, E,
E, I, I, E, E, E, E, I, I, E, E, E, E, I, I,
E, E, E, E, I, I, E, E, E, E, I, I, E, E, E,
E, I, I, E, E, E, E, I, I, E, E, E, E, I, I,
E, E, E, E, I, I, E, E, E, E, I, I, E, E, E,
E, I, I, E, E, E, E, I, I, E, E, E, E, I, I,
E, E, E, E, I, I, E, E, E, E, I, I, E, E, E,
E, I, I, E, E, E, E, I, I, E, E, E, E, I, I,
E, E, E, E, I, I, E, E, E, E, I, I, E, E, E,
E, I, I, E, E, E, E, I, I, E, E, E, E, I, I,
E, E, E, E, I, I, E, E, E, E, I, I, E, E, E,
E, I, I, E, E, E, E, I, I, E, E, E, E, I, I,
E, E, E, E, I, I, E, E, E, E, I, I, E, E, E,
E, I, I, E, E, E, E, I, I, E, E, E, E, I, I,
E, E, E, E, I, I, E, E, E, E, I]

The primary HDU is not commonly used for scientific
data. For us, the interesting part is the second HDU,
index 1, which as you can see is a table stored in a bi-
nary format (“BinTableHDU”), with 243500 rows and
233 columns. The big list that follows lists the type
of variable for each column: K are 64-bit-integers, 11A
is a string with 11 characters, I a 16 bit integer, E a
single precision floating point.31 For more information
about the columns, call the columns attribute of the ta-
ble. The table, as we have seen, is the second element of
the hdulist, namely hdulist[1]:

In: hdulist[1].columns
Out:
ColDefs(

name = ’specobjid’; format = ’K’; null =
-9223372036854775808

name = ’dr8objid’; format = ’K’; null = -99
name = ’dr7objid’; format = ’K’
name = ’ra’; format = ’E’
name = ’dec’; format = ’E’
name = ’rastring’; format = ’11A’
name = ’decstring’; format = ’11A’
name = ’sample’; format = ’20A’
name = ’gz2class’; format = ’20A’
name = ’total_classifications’; format = ’I’
name = ’total_votes’; format = ’I’

31 All the different types and their specifications can be found
on [http://docs.astropy.org/en/stable/io/fits/usage/table.html]

. . . I am not showing all of the output, but as you can see,
this returns the column names as well as their types. In
order to extract the data, we will use the data attribute
of the table object. Once we have opened the HDULIST
and assigned it to a variable hdulist, we can get the
data via

tdata = hdulist[1].data

To access a specific column from this table, you can use
that column’s name as follows:

In: tdata.field(’specobjid’)
Out:
array([1802674929645152256, 1992983900678285312,

1489568922213574656,
..., 1959146978059249664, 467329305811118080,

-9999])

As a result, we obtain the column named ’specibjid’ as
an array. We can use the usual index conventions to get
elements, such as

In: tdata.field(’specobjid’)[4]
Out: 1387165355897546752

to access the fifth element in the list.

9.2. Opening an ASCII table in python

Some tables are in ascii format – an ASCII file with
elements belonging to the various column the columns
separated by spaces or other symbols, or defined because
each column has a pre-defined width.

As an example, download the csv (comma-separated
values) version of the Galaxy Zoo Data Release table 5 we
had already opened as a FITS file in the previous section,
namely [zooniverse-data.s3.amazonaws.com/galaxy-zoo-
2/zoo2MainSpecz.csv.gz]. Astropy has an “ascii” sub-
module to handle such files as follows:

from astropy.io import ascii
tdata=ascii.read(’zoo2MainSpecz.csv’)

The resulting tdata is a table object in Astropy. With
the info attribute, you can once more get a list of all
columns and their types:

In: tdata.info
Out:
<Table masked=True length=243500>

name dtype n_bad
-------------------- ------- -----

specobjid int64 14
dr8objid int64 3752
dr7objid int64 0

ra float64 0
dec float64 0

rastring str11 0
decstring str11 0

sample str8 0
gz2class str8 0

Again, this is only the start of a much longer list. The
name and data type of the column are given; I suppose
n bad counts empty or malformed entries, but couldn’t
find the proper documentation. For columns with nu-

http://docs.astropy.org/en/stable/io/fits/usage/table.html
zooniverse-data.s3.amazonaws.com/galaxy-zoo-2/zoo2MainSpecz.csv.gz
zooniverse-data.s3.amazonaws.com/galaxy-zoo-2/zoo2MainSpecz.csv.gz

59

merical values, information like the minimum, maximum
and mean value are provided, as well. Using a column
name as the key will again give you data from that col-
umn:

In: tdata[’specobjid’]

Out:
<MaskedColumn name=’specobjid’ dtype=’int64’

length=243500>
1802674929645152256
1992983900678285312
1489568922213574656
2924083625089591296
1387165355897546752
1833070384862226432
1809324500555163648

...

where I have again shortened the output. Using a list
index gives a specific entry in that column:

In: tdata[’specobjid’][4]

Out: 1387165355897546752

9.3. Accessing astronomical data bases

In sections 4.3 and 4.4, we used TOPCAT to send re-
mote queries written in the ADQL query language to Vir-
tual Observatory (VO) services. These queries helped us
to select specific data from existing catalogs. There are
several ways of doing the same directly from a Python
script.

For one, we can use the module pyvo to access VO
services. The module is not included in the standard
Anaconda setup, though, and you will need to import
it. In Linux and on a Mac, going to the command line
and entering pip install pyvo should do the trick. In
Windows, your Anaconda directory should somewhere
include the file pip.exe. If you open the command line
tool and execute pip.exe install pivo, that should
work for you. Once you have installed pyvo, you can run
queries like the following:

import pyvo as vo
import matplotlib.pyplot as plt

serviceURL="http://gea.esac.esa.int/tap-server/tap"
service = vo.dal.TAPService(serviceURL)
resultset = service.search(
"""
SELECT TOP 1000000
l,b
FROM gaiadr2.gaia_source
ORDER BY RANDOM_INDEX
""")

plt.clf()
plt.hist2d((resultset[’l’]+180.0) %

360,resultset[’b’], bins=(200, 200),
cmap=plt.cm.jet)

plt.savefig(’gaia-plot.pdf’,bbox_inches=’tight’)

First, we are importing pyvo, then matplotlib. Then, we
are defining a service; the URL is the service URL, where

one can connect with the data base. This particular data
base is the same one as the GAIA service we have used
in sections 4.3 and 4.4.

Then, I am performing a search using that service.
Recall that a multi-line string in Python begins with a
triple set of double quotation marks, """. In this case,
the multi-line string contains the ADQL query, using the
same syntax you have learned in section 4.4. This time,
we are retrieving the properties galactic longitude l and
galactic latitude b, referring to the coordinate system in
which the Milky Way band across the sky is at latitude
b=0. We are again using the RANDOM INDEX to re-
trieve a random subsample of Gaia point sources.

In the lower part, we plot a 2d-histogram, that is, a
density plot for the objects we have retrieved. As you can
see, we access the list of all retrieved galactic longitudes
l by calling up resultset[’l’], while we get the list
of latitudes b by calling up resultset[’b’]. This is
the same as for other tables, where we can retrieve a
column by using the column name as an index. The
combination (resultset[’l’]+180.0) % 360 is used to
shift the galactic longitude by 180 degrees. That way,
the galactic center is not around l=0, that is, at the left
and right margin of the image, but in the center. The

50 100 150 200 250 300 350

50

0

50

Fig. 96.— Plot of Gaia stars, retrieved with PyVO

resulting image gaia-plot.pdf can be seen in Fig. 96. Once
more, the Milky Way, the Large Magellanic Cloud and
the Small Magellanic Cloud are clearly visible.

Just like the TOPCAT TAP access, there is a whole
world of different services to explore via this interface,
from stars to exoplanets32 to galaxies.

Another way of accessing various catalogues is the
AstroQuery package,33 a collection of modules to re-
trieve data from various astronomical catalogues via the
web. Information about the specific catalogues and the
specifics of accessing them can be found in the documen-
tation at [https://astroquery.readthedocs.io].

As a simple example, here is the same Gaia query
we had already executed with pyvo, but this time us-
ing astroquery:

32 E.g. via the API for the highly useful Extrasolar Planet En-
cyclopaedia website, [http://exoplanet.eu/API/]

33 A general description can be found in Ginsburg et al. 2019,
“astroquery: An Astronomical Web-Querying Package in Python,”
https://arXiv:1901.04520

https://astroquery.readthedocs.io
http://exoplanet.eu/API/
https://arxiv.org/abs/1901.04520

60

from astroquery.gaia import Gaia
import matplotlib.pyplot as plt

job = Gaia.launch_job("""
SELECT TOP 1000000
l,b
FROM gaiadr2.gaia_source
ORDER BY RANDOM_INDEX
""")
resultset = job.get_results()

plt.clf()
plt.hist2d((resultset[’l’]+180.0) \%

360,resultset[’b’], bins=(200, 200),
cmap=plt.cm.jet)

plt.savefig(’gaia-plot2.pdf’,bbox_inches=’tight’)

The resulting figure looks exactly the same as Fig. 96.

10. ASTRONOMICAL IMAGE MANIPULATION
WITH PYTHON

All professional astronomical images are in the FITS
format, file extension .fits or .fit, which stands for “Flexi-
ble Image Transport System”. Where your ordinary JPG
file gives you 256 steps between darkest and brightest (8
bits, separately for each color RGB), FITS gives you, by
default, 65536, or 16 bits. That’s a lot of contrast. In
section 3, we learned how to use application software to
take a look at, and perform some measurements in, im-
ages in FITS format. Let’s see how we can display and
analyse FITS images in Python.

10.1. FITS files and python

In order to open a FITS image file in Python, we
once more use the Astropy sub-module astropy.io.
Just as we did with FITS tables in section 9.1, we
first load the HDU list. For convenience, we use
one of the Hubble Space Telescope images we had
already downloaded in section 3.1, namely the file
hst 05773 05 wfpc2 f502n wf drz.fits. We load the file’s
HDU list like this:

from astropy.io import fits
fitsURL=’hst_05773_05_wfpc2_f502n_wf_drz.fits’
hdulist=fits.open(fitsURL)

If we call the function info on the hdulist, we are shown
the different header/data units of this fits file:

In: hdulist.info()
Out:
Filename: hst_05773_05_wfpc2_f502n_wf_drz.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 509 ()
1 SCI ImageHDU 103 (2150, 2150)

float32
2 WHT ImageHDU 124 (2150, 2150)

float32
3 CTX ImageHDU 123 (2150, 2150)

int32

We are interested in the science image SCI, the second
HDU, hence the one with index 1. The header com-
ponent of the HDU variable will give you access to the
header, as shown in the following listing.

In: hdulist[1].header

Out: Out[279]:
XTENSION= ’IMAGE ’ / Image extension
BITPIX = -32 / array data type
NAXIS = 2 / number of array

dimensions
NAXIS1 = 2150
NAXIS2 = 2150
PCOUNT = 0 / number of parameters
GCOUNT = 1 / number of groups
CRVAL1 = 274.7173822566667 / right ascension of

reference pixel (deg)
CRVAL2 = -13.83106772194444 / declination of

reference pixel (deg)
CRPIX1 = 1075.0 / x-coordinate of

reference pixel
CRPIX2 = 1075.0 / y-coordinate of

reference pixel

Once again, I am showing only a small part of the output
here. You can access specific header information by plug-
ging in the respective keyword. This here, for instance,
will give you the number of pixels along the first image
dimension:

In: hdulist[1].header[’NAXIS1’]

Out: 2150

An interesting piece of information is the exposure time
in seconds, which is contained in the header of the pri-
mary HDU:

In: hdulist[0].header[’EXPTIME’]

Out: 2200.0

The data component of the science HDU will give you
the image data. Let’s define

imdata = hdulist[1].data

10.2. Displaying (showing) an image

Once we have the image data, we can display it, using
matplotlib, using the imshow function, as follows:

plt.clf()
plt.axes().set_aspect(’equal’)
plt.imshow(imdata,cmap=’gray’)

The set_aspect(’equal’) tells matplotlib that both x
and y axes should have the same scale, as behoves two
spatial directions spanning a two-dimensional plane. The
cmap option tells imshow which colormap to use, in this
case grayscale; many others are possible. The result is
at first rather dark, as you can see in Fig. 97. Just like
with DS9, we somehow need to map the high contrast
of the FITS image to our more modestly contrasted ver-
sion. We can use the clim option to map a more re-
stricted range of values to our image. Let’s look at the
1st and 99th percentile values of the image data (that is,
the brightness value below which the darkest 1% of the
pixels fall, and the brightness value above which 1% of

https://matplotlib.org/examples/color/colormaps_reference.html

61

0 500 1000 1500 2000

0

500

1000

1500

2000

Fig. 97.— This is not the image of a black hole

the pixels fall). We can access those descriptive numbers
by typing

In: np.percentile(imdata,1)
Out: -0.028674498219043016

In: np.percentile(imdata,99)
Out: 0.068247721269726738

With the results, we can plot the image setting more
suitable brightness limits (more generally, limits for our
color map) like this:

plt.clf()
plt.axes().set_aspect(’equal’)
plt.imshow(imdata,cmap=’gray’,clim=(-0.03,0.088))

The result can be seen in Fig. 98.

10.3. Pixelwise operations

The image data we have put on display is an array.
Specifically, you can see this as

In: type(imdata)

Out: numpy.ndarray

and

In: imdata.shape

Out: (2150, 2150)

which shows you that the image is a Numpy array
2150 × 2150. Just like with any other array, we can re-
trieve pixel-wise information. For instance, the bright-
ness value of the pixel x = 1200, y = 1400 can be re-
trieved by accessing the respective element of the imdata
array, namely as

0 500 1000 1500 2000

0

500

1000

1500

2000

Fig. 98.— HST image of M 16, with adapted colourmap

In: imdata[1400][1200]

Out: 0.030607721

Note the counter-intuitive order — the first square paren-
theses contain the y value, the second one the x value!
We can change pixel values in the same way, by assigning
a new value to a specific imdata[y][x]. Being able to
read out and manipulate pixels individually gives us sub-
stantial power to analyse the image. We can use all the
tools the previous sections have put at our disposal, com-
paring pixel values, or summing them up, or performing
fits, or trying to identify point sources, or doing much
more complicated types of analysis.

Let us perform at least some basic operations on the
SDSS data file frame-g-007923-5-0307.fits that we had
downloaded and analysed in sections 3.6 and 3.7. It’s
usually good idea to take an overall look at the image
one intends to analyse, which we have learned to do in
this way:

hdulistS=fits.open(’frame-g-007923-5-0307.fits’)
imdataS=hdulistS[0].data

lowerOne = np.percentile(imdataS,1)
upperOne = np.percentile(imdataS,99)

plt.clf()
plt.imshow(imdataS,cmap=’gray’,

clim=(lowerOne,upperOne))
plt.savefig(’sdss-py.pdf’,bbox_inches=’tight’)

The result is shown in Fig. 99. Next, let us see if we
can re-do the simple aperture photometry measurements.
The stars we had compared in section 3.7 were located
at X = 1819, Y = 1215 and X = 1123, Y = 32, respec-
tively. We can use xlim and ylim to zoom in onto those
locations; for instance, amending the plot with

62

0 250 500 750 1000 1250 1500 1750 2000

0

200

400

600

800

1000

1200

1400

Fig. 99.— SDSS DR9 frame displayed with imshow

centerX = 1819
centerY = 1215

plt.xlim(centerX-100,centerX+100)
plt.ylim(centerY-75,centerY+75)

we obtain a detailed view all around the first of the stars,
200 pixels in width, 150 in height. Next, we will visu-
alize both the position of the star we are interested in,
and the surrounding regions we will use in our aperture
photometry measurements. To this end, we will add a
circle to our diagram, centered on the star. The proper
way of doing this is

thisCircle = plt.Circle((centerX, centerY), 10,
color=’r’,fill=False,lw=2)

plt.gca().add_artist(thisCircle)

This has two parts. In the first part, we define a cir-
cle centered on (1819, 1215) with radius 10, the colour
red, which is not filled, just an outline with linewidth 2.
In matplotlib, that circle is a so-called “patch”, a two-
dimensional artist object. Artist objects are matplotlib’s
way of drawing specific shapes.

In the second line, add_artist adds this circle to the
axes object of our figure. We repeat those commands
with radius 20; the outer circles mark the area we will use
for determining the background brightness. Note that in
repeating those commands, we need not even choose a
different name for the variable thisCircle.

Once we have pushed the object onto our diagram us-
ing add_artist, the variable has done what it was meant
to be, and we can use it to define, and draw, another
circle. The result can be see in Fig. 100: Our chosen
location is now surrounded by two circles, drawn in red.

That is a cosmetic marking only, though. Next, we
can do aperture photometry as in section 3.7. First, we
determine the sum of pixel brightness values in the outer
circle, as well as the area of that outer circle in pixels.
We do so by going over all pixels in a square with side
length 2*radius, and including only the values of pixels
whose distance is smaller than the value of radius, in

1025 1050 1075 1100 1125 1150 1175 1200
40

20

0

20

40

60

80

100

Fig. 100.— Detailed view of the region around the first star, with
an inner circle and outer annulus marked

other words: those pixels that are in the circle we are
interested in:

radius=20
photCollector=np.array([])
for ii in range(centerX-radius, centerX+radius):

for jj in range(centerY-radius,centerY+radius):
distance = np.sqrt((ii-centerX)**2 +

(jj-centerY)**2)
if distance < radius:

photCollector= np.append(photCollector,
imdataS[jj][ii])

C1 = np.sum(photCollector)
A1 = len(photCollector)

As a result, I obtain C1=107.65 and an area of A1 =
1245 pixels. For the inner circle, with radius 10 pixel, I
get C2 = 101.12 with an area A2 = 305 pixels. Using
the brightness formula (6),

l = C2 −
C1 − C2

A1 −A2
·A2, (18)

we subtract from the sum of brightness values C2 the
sum of background brightness values (as estimated by the
average of the brightness values in the annulus bounded
by the inner and the outer circle). For the first star, I get
the brightness lA = 12.60. I repeat the procedure for the
second star, the one at X = 1123, Y = 32, and obtain
C1 = 107.47 with an area of A1 = 2809 pixels, and C2
= 107.65 for an area of A1= 1245 pixels. Using once
more the brightness formula (18), the star’s background-
subtracted brightness is lB = 107.80.

As I had already argued in section 3.7, given that the
collecting area and the exposure time are the same in
both cases, the ratio of our values lB and lA should be
the same as the ratio of the intensities of the two stars;
inserting this into equation (1) for the astronomical mag-
nitudes, we find

mA−mB = −2.5·log

(
lA
lB

)
= −2.5·log

(
12.6

107.8

)
= 2.33,

(19)

63

again not far from the difference in the stars’ catalog g
magnitudes (gmag) of 2.13.

This is a single example of how we can use our
ability to access an astronomical image pixel by pixel
unlocks a treasure trove of analytical possibilities.34

If you really want to do aperture photometry on
a larger scale, you would very likely not want to
code your analysis from scratch — you would use,
for instance, the Astropy-affiliated package Photutils
[https://photutils.readthedocs.io/] and its higher-level
functions for identifying point sources and measuring
their brightness. But the main point of this section was
much more general: Once we have loaded FITS data,
the full force of coding can be brought into play. Our
aperture photometry example was comparatively sim-
ple. More complex operations are possible: We could
fit a brightness profile to an extended source, or try to
reconstruct the point-spread function for a point source.
We could even try to have our script identify objects
such as stars automatically, by checking brightness dif-
ferences. The possibilities are virtually endless, definitely
so in that astronomers will continue to bring to bear new
analysis tools as they are being developed. Recent appli-
cations of machine learning in astronomy are a pertinent
example.

11. A SIMPLE SIMULATION

So far, we have almost exclusively dealt directly with
observational data, either images/spectra or higher-level
table data. This is not the only kind of data that as-
tronomers work with — there is a whole other branch of
research focused on simulated data. Such simulated data
can play different roles. Some are meant to provide a
point of comparison for observations. For instance, if you
really want to understand all the details of the spectral
line shape in a stellar spectrum, you will need access to
the results of simulations for the genesis of those lines.
The newest versions take into account complex effects
such as the absence of local thermodynamic equilibrium
(a common simplification). Compare the simulated spec-
tra for different stellar parameter values (such as chem-
ical abundances) with your observations, and you can
deduce the properties of your star.35

Other simulations are more ambitious in scope. The
various runs of the IllustrisTNG36 simulation, for in-
stance, follow a cubic region within the cosmos from
shortly after the Big Bang to the present. The simula-
tion runs are of different degrees of coarseness, simulat-
ing either a very highly resolved cube with a sidelength
of 50 million parsecs, a less well resolved cube of 100
Mpc or a larger, but still less resolved cube 300 Mpc
a side. The simulation is mostly based on “particles”
representing dark matter, stars, and gas, and simulates
numerous physical processes including the influence of
magnetic fields, the formation and evolution of stars in

34 A more detailed guide for CCD image processing using
Python is the “CCD Data Reduction Guide” by Matt Craig and
Lauren Chambers, available at [https://mwcraig.github.io/ccd-as-
book/00-00-Preface.html].

35 At the time of this writing, a sample set of tools from the
group of Maria Bergemann at the Max Planck Institute for As-
tronomy can be found on [http://nlte.mpia.de].

36 More information can be found at [http://www.tng-
project.org].

Fig. 101.— Details of a massive disk galaxy at redshift z = 1,
simulated with the TNG50 simulation. Image: TNG collaboration

galaxies, the production of heavier elements in stars, and
interactions with the supermassive black holes in the cen-
tres of galaxies. All in all, the IllustrisTNG simulations
follow the evolution of the universe over the full 13.8 bil-
lion years, including diverse length scales from those on
which the cosmos is, on average, homogeneous, down to
those of the sub-structure of galaxies, cf. Fig. 101.

As I have written before, the details of such simulations
call for (at least!) a whole set of lecture notes of their
own. Most of that knowledge is far beyond the scope of
the present text. But I firmly believe that an overview
of working with astronomical data needs to include at
least a brief introduction to creating your own data based
on models and on the laws of physics — that, in my
mind, is an integral part of working-with-astronomical-
data literacy. With this in mind, here is a simple example
that illustrates at least some basic techniques, and also
some elementary pitfalls, of numerical simulations. The
physics in this case is simple, classical mechanics.

11.1. Step-by-step numerical integration: Euler method

We revert to what is probably the most basic (and ar-
guably most useful!) elementary system in all of physics:
The harmonic oscillator. The basic set-up is as shown in
Fig. 102: A particle with mass m, which can move only
in the (horizontal) x direction, is fixed to the wall with a
spring. If the particle is displaced from its rest position
at x = 0, the spring exerts a force following Hooke’s law,
Fx = −k ·x, with k the spring constant. This system has

https://photutils.readthedocs.io/
https://mwcraig.github.io/ccd-as-book/00-00-Preface.html
https://mwcraig.github.io/ccd-as-book/00-00-Preface.html
http://nlte.mpia.de/
http://www.tng-project.org
http://www.tng-project.org

64

0 x

1

Fig. 102.— Harmonic oscillator: particle on a spring

the advantage that its equation of motion,

mẍ = −k · x, (20)

linking the x acceleration ẍ and the force using Newton’s
second law, is readily solved analytically, that is, in terms
of a simple mathematical function. The solution is

x(t) = A · sin(ωt), (21)

where the angular frequency ω is linked to the system’s
oscillation period T by the standard definition

ω =
2π

T
, (22)

and the equations of motion in this particular case de-
mand

ω =

√
k

m
. (23)

Differentiating the orbit equation (21) once with respect
to time, we have

ẋ = ω ·A · cos(ωt), (24)

and differentiating with respect to time once more,

ẍ = −ω2 ·A · sin(ωt) = − k
m
· x, (25)

which shows that our solution (21) indeed satisfies the
equation of motion (20). So far, so elementary. But
now, pretend that we do not know of this simple solution.
How can we simulate the system, in other words: find a
solution not analytically, but numerically?

The basic idea is that, if we look at very small time
interval, all of the changes during such an interval will
be approximately linear. This, is, after all, the definition
of a derivative: over an infinitesimally small interval dt,
the change of the function x(t), namely dx, is given by

dx = ẋ · dt. (26)

Replace the infinitesimally small interval dt by a finite
small interval ∆t, and what was an equality in (26) be-
comes an approximation, whose quality depends on the
magnitude of ∆t: the smaller ∆t, the better the approxi-
mation. Thus, if we know the particle’s x position at one
time t, we can estimate its position at a slightly later
time t+ ∆t as

x(t+ ∆t) = x(t) + v(t) ·∆t, (27)

where v(t) is the particle’s velocity in x direction at the
time t. What this formula does not encode, of course,
is how v(t) changes over time. But for the change of
v, we can write down a similar equation. The rate of
change of the velocity, after all, is the acceleration, which

by Newton’s second law F = mẍ is linked to the force
acting on the particle. Thus, to obtain the velocity at
some time t+ ∆t, we can use the approximation

v(t+ ∆t) = v(t) + ẍ(t) ·∆t = v(t) +
F (t)

m
·∆t. (28)

Incidentally, in writing down the approximation equa-
tions (27) and (28), we have applied a technique that
can be used much more generally, when dealing with
higher-order differential equations: We have transformed
a single second-order differential equation (for ẍ) into a
system of (two) first order equations, each of which we
have solved approximately, in going from t to t+ ∆t.

Now, we can discretize the whole problem: We consider
time steps ti, with i = 1, . . . , N , and evaluate the position
and the velocity of our particle at each step. We choose
the times ti equidistant, with ti+1 − ti = ∆t for all i, for
some fixed, small ∆t.

(What is small, and more specifically: what is suffi-
ciently small? That depends on the problem’s charac-
teristic time scale, and requires physical thought. With
hindsight (or by looking at the analytical solution), we
know that we are dealing periodic, oscillatory motion,
so whatever interval ∆t we choose had better be much
smaller than the system’s natural period T . If we cannot
find a physical time scale to ascribe to the system, we
might need to fall back on experimentation. If the solu-
tion changes significantly when we repeat the simulation
with ever smaller ∆t, that is an indication we have not
reached the proper resolution yet. If, on the other hand,
the solution remains pretty much the same when we re-
place, say, ∆t by ∆t/2, that is an indication that we have
reached the regime where the finite size of ∆t does not
exert significant influence on our result any more.)

Differential equations do not, on their own, completely
determine what is happening. It is necessary to specify
initial conditions in order to define a unique solution.
As an example, consider what happens when you throw
a ball vertically upward from the Earth’s surface. The
differential equations tell you how Earth’s gravity will
accelerate the ball. But those equations alone are not
sufficient to tell you what happens. For a prediction, you
will need to specify both the ball’s initial position and
it’s initial velocity. Both those initial values are crucial
in determining how the ball will move, and in particular
whether it will fall back to Earth or keep going forever
(when its velocity is larger than the position-dependent
escape velocity).

In this case, let us choose an initial position x0 and
initial speed v0 for our particle. Let xi be the object’s
position at time ti, vi its velocity in x direction at that
time, ai its acceleration and Fi the force acting on it at
the time. The simple, step-wise evolution equations we
have derived are

vi+1 = vi + ai ·∆t = vi +
1

m
Fi ·∆t (29)

xi+1 =xi + vi ·∆t. (30)

The process of following the evolution step by step is
called numerical integration, and the simple algorithm
we have given for going from one step to the next is called
Euler’s method. In our case, with the Hooke force (20),
the force depends only on the position, so the velocity

65

equation reads

vi+1 = vi −
k

m
xi ·∆t. (31)

This is readily implemented in Python, for instance in
the following way, using the loop function. (The array
tCollector is only defined in preparation of plotting
positions against time later on, and not used in the nu-
merical integration itself.)

k=0.5
m=1.0
numberOfSteps = 30000
DeltaT = 0.001
finalT =numberOfSteps*DeltaT

tCollector=np.linspace(0,finalT,numberOfSteps+1)

Initial conditions:
xCollector=[1.0]
vCollector=[0]

for ii in range(numberOfSteps):
xNew = xCollector[-1] + DeltaT*vCollector[-1]
vNew = vCollector[-1] +

DeltaT*(-k/m*xCollector[-1])
xCollector.append(xNew)
vCollector.append(vNew)

Plotting the result, as in Fig. 103, shows that we indeed

0 5 10 15 20 25 30
Time

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

x
Po

sit
io

n

Fig. 103.— Solution of the harmonic oscillator equation with
initial position 1.0 and initial speed 0.0

obtain the proper sine shape, shifted so as to form a
cosine function. (Why cosine instead of sine? Because,
by choosing our initial condition to be v = 0, we start
our evolution at the maximum x value.)

11.2. Numerical errors

If I just were to plot the analytical solution and the nu-
merical solution in the same diagram, the curves would
be overlaid so closely that no difference would be visi-
ble upon direct inspection. As an alternative, Fig. 104
shows the difference between the analytical and the nu-
merical solution for our harmonic oscillator solution, at
each time. There is good news and there is bad news.
The good news is that the differences between the true
solution and our simulation are very small, namely 0.6%
at most, and much better for most of the time. The
bad news is that the differences are getting larger over
time. If that trend continues, and we let our simulation

0 5 10 15 20 25 30
Time

0.006

0.004

0.002

0.000

0.002

0.004

0.006

Di
ffe

re
nc

e
an

al
yt

ica
l v

s.
nu

m
er

ica
l

Fig. 104.— Difference between our numerical solution and the
analytical solution

run much further, its deviations from the true solution
will become so large as to be noticeable. Our numerical
simulation is unstable in this sense.

We can understand why that is. Imagine that, in truth,
our particle reaches our maximum x value at time ti.
From time ti−1 to time ti, we change the x value by
∆x = +vi−1 ·∆t. But vi−1 is the (non-zero) velocity at
the beginning of the interval. Over the time ∆t, that
velocity will change to zero (since velocity zero is what
defines the maximum value, the turning point). Thus,
the average velocity over that interval will be smaller
than the initial velocity for that interval. We are over-
estimating the amount ∆x that x increases during that
time. We pretend the object has flown with unchanged
initial velocity vi−1, whereas, in reality, it has slowed
down. That means our turning-point x will be just a
little further out, x a little larger, than in reality.

There is nothing in our simulation to compensate for
that larger error. The system knows nothing of its past.
That slightly larger x, that slightly larger amplitude at
the turning point will be carried along for the rest of
our simulation. You can think about it in the following
way: Because of the slightly over-large x when the turn-
ing point comes, our system, from then on, has a slightly
larger potential energy than it should have. There is
nothing to compensate; once the extra energy has seeped
into the system through the numerical error, it will re-
main in the system.

Even worse: At every turning point, the same argu-
ment applies, so at every turning point, the error of hav-
ing a slightly larger amplitude will increase. The errors
systematically add up. That is what makes the system
unstable. Errors do not compensate each other; errors
just add up over time, increasing the overall deviation
from the true time evolution.

Note that the systematic errors, and the instability, are
a property of the algorithm we have used to simulate the
time evolution. There are several different algorithms
that, in the limit of infinitesimal ∆t, all amount to the
same integration procedure, but which differ in their sta-
bility properties and in how accurate they are for finite
∆t. We will look at one of them in the next section.

11.3. Velocity Verlet algorithm

One example for a better-behaved numerical integra-
tion scheme xsis the velocity Verlet algorithm, which in-
troduces “half-step” velocities, in order to mitigate prob-

66

lems like those I described in section 11.2, as follows:

vi+1/2 = vi +
1

2
∆t · ai (32)

xi+1 =xi + vi+1/2 ·∆t (33)

vi+1 = vi+1/2 +
1

2
∆t · ai+1, (34)

where the ai is again calculated from the force acting in
time step i. In this algorithm, we avoid always using the
initial values of rates-of-change at each time step, leading
to systematic errors; instead, the calculation of xi+1 uses
the intermediate velocity, while the transition from vi to
vi+1 proceeds in two steps, one using the acceleration
value at the beginning, the second the one at the end
of the interval ∆t. The implementation is, again, fairly
straightforward:

k=0.5
m=1.0
numberOfSteps = 30000
DeltaT = 0.001
finalT =numberOfSteps*DeltaT

tCollector=np.linspace(0,finalT,numberOfSteps+1)

Initial conditions:
xCollectorVV=[1.0]
vCollectorVV=[0]

for ii in range(numberOfSteps):
vHalf = vCollectorVV[-1] +

0.5*DeltaT*(-k/m*xCollectorVV[-1])
xNew = xCollectorVV[-1] + DeltaT*vHalf
vNew = vHalf + 0.5*DeltaT*(-k/m*xNew)
xCollectorVV.append(xNew)
vCollectorVV.append(vNew)

The comparison between the results can be seen in
Fig. 105. The velocity Verlet algorithm, too, appears

0 5 10 15 20 25 30
Time

0.006

0.004

0.002

0.000

0.002

0.004

0.006

Di
ffe

re
nc

e
an

al
yt

ica
l v

s.
nu

m
er

ica
l

Euler
104 (velocity Verlet)

Fig. 105.— Difference between our numerical solution and the
analytical solution, once for the Euler algorithm, once for the ve-
locity Verlet algorithm (the latter here scaled up artificially by a
factor 104)

to be unstable in the long-term, with the error increas-
ing over time. But the simple of expedient of adding the
half-step velocity has greatly improved the accuracy. Af-
ter all, note that, in this diagram, I have scaled up the
difference for the velocity Verlet algorithm by a whop-
ping factor of 104 to make it visible in comparison with

the Euler deviations!
This simple example shows the importance of imple-

menting the evolution algorithm carefully; finding the
best ways of doing this is a science (and possibly an art)
of its own. If you decide to explore this further, you
might want to look at the Runge-Kutta family of itera-
tive methods next.

11.4. A simple two-dimensional simulation

So far, our simple simulation was one-dimensional: mo-
tion in the x direction over time. Let us choose a two-
dimensional scenario next, and one that is very impor-
tant in astronomy: The motion of a test particle around
a central mass under the influence of the central mass’s
(Newtonian) gravity, which provides a good model for
the orbit of a (not too massive) planet around a star.

Let us put the central mass into the origin of our co-
ordinate system. We treat the x and y components of
the motion separately. Since we have two independent
directors, we will need to treat the force as a vector as
well, separating its x from its y component. Fig. 106
shows the geometry of the situation. Crucially, the tri-

x

y

F

Fx

Fy

M

m

1

Fig. 106.— Planet with mass m orbiting in the xy plane under
the gravitational influence of a central mass M in the origin

angle describing the x-y-position of the planet and the
triangle describing the decomposition of the gravitational
force into x and y component are similar, in the geomet-
ric sense: as the figure shows, they have the same set of
three angles. Similar triangles can only differ by an over-
all length scale. In particular, ratios of the corresponding
sides of such triangles are the same. If we abbreviate the
distance of the planet from the origin (and thus from the
central mass) as

r =
√
x2 + y2 (35)

(having applied the Pythagorean theorem), then we have

Fx

F
=
x

r
(36)

and
Fy

F
=
y

r
. (37)

For the Newtonian gravitational force, we have

F = −GMm

r2
. (38)

67

Using Fx = max and Fy = may for the link between the
force and the acceleration components, we have

vx,i+1/2 = vx,i +
1

2
∆t · ax,i (39)

xi+1 =xi + vx,i+1/2 ·∆t (40)

vx,i+1 = vx,i+1/2 +
1

2
∆t · ax,i+1, (41)

and analogous equations linking the vy and y values.
Note that, via r, the force at any given step, and thus the
acceleration components, depend on both coordinates.

Next, we need to choose suitable units. Let the central
mass have one solar mass, M� = 2 · 1030 kg. Going by
Earth’s orbit, a suitable unit of length is the astronomical
unit (corresponding to the average Earth-Sun distance),
1 au = 1.5 · 1011 m. As our unit of time, we choose
the Julian year: 365.25 standard days, abbreviated as a
for the latin “annum” for year, related to the SI unit,
the second, as 1 a = 31 557 600 s ∼ π · 107 s. The
corresponding unit for speed is related to the more usual
one as

1
km

s
= 0.21

au

a
(42)

and the acceleration felt by the planet is given by

F/m = −39.48

(
1 au

r

)2
au

a2
. (43)

The simulation code itself is listed here:

numberOfSteps = 30000
DeltaT = 0.0001
accFac = 39.48 # Corresponding to one solar mass,

in au per square year
finalT=numberOfSteps*DeltaT

tCollector=np.linspace(0,finalT,numberOfSteps+1)

Initial conditions:
xCollector=[1.5]
vxCollector=[0]
yCollector=[0.0]
vyCollector=[2.0]

for ii in range(numberOfSteps):
rNow =

np.sqrt(xCollector[-1]**2+yCollector[-1]**2)
accNow = -accFac/rNow**2
accNowx= accNow*xCollector[-1]/rNow
accNowy= accNow*yCollector[-1]/rNow
vxHalf = vxCollector[-1] + 0.5*DeltaT*accNowx
vyHalf = vyCollector[-1] + 0.5*DeltaT*accNowy
xNew = xCollector[-1] + DeltaT*vxHalf
yNew = yCollector[-1] + DeltaT*vyHalf
rNew = np.sqrt(xNew**2 + yNew**2)
accNew = -accFac/rNew**2
accNewx = accNew*xNew/rNew
accNewy = accNew*yNew/rNew
vxNew = vxHalf + 0.5*DeltaT*accNewx
vyNew = vyHalf + 0.5*DeltaT*accNewy

xCollector.append(xNew)
yCollector.append(yNew)
vxCollector.append(vxNew)
vyCollector.append(vyNew)

For the half-step velocity, we calculate the accelerations
in x and y direction, starting with the magnitude of the
acceleration, which follows directly from Newton’s law.
Then, we evolve the position one time step further, re-
calculate the acceleration for the new position, and use
those to update the x and y component of the velocity
for the second half of the time step.

To close this section, and put our simulation to the
test, let us see if we can recover Kepler’s three laws of
planetary motion from our simulation. We begin by plot-
ting the shape of the orbit in Fig. 107. That certainly

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.4

0.2

0.0

0.2

0.4

Fig. 107.— Orbit of a planet around a central mass, simulated
with the velocity Verlet algorithm

looks like an elliptical orbit, with the central mass at the
origin serving as one of the focus points. But we should
demonstrate this fact in a more quantitative way. Tak-
ing the minimum and maximum x value on our simulated
orbit, we find that the left-most point of the orbit is at
x = −0.12335823920305192, while the rightmost point is,
by construction, at x = 1.5 (since that is where we put
the initial position of our particle, its velocity pointing
straight upwards).

Thus, our simulated orbit has a major half axis of a =
1.623 au. From the minimum and maximum of the y
coordinate value, we find that the minor half axis is b =
0.860 au. For an ellipse, that would correspond to an
eccentricity of

e =

√
1− b2

a2
= 0.848. (44)

The polar coordinate equation for an ellipse is

r(θ) =
a(1− e2)

1 + e cos θ
. (45)

Inserting our parameter values a and e, we can plot this
reference ellipse and compare with the simulated orbit.
The resulting plot looks just like Fig. 107, with one el-
lipse directly on top of the other. At least qualitatively,
we have indeed confirmed Kepler’s first law: the orbit of
a planet orbiting a central mass is an ellipse, with the
central mass in one of the focal points. More quantita-
tively, we can compare analytical solution and simulation
directly. There are several possibilities for this; with the
following piece of code, I take each simulated point, cal-
culate the position angle θ and distance r from the focus
point, and compute the absolute value of the difference

68

between the simulated value r and the analytical value
r(θ) given by (45):

diffCollector=[]

for x,y in zip(xCollector,yCollector):
r=np.sqrt(x**2+y**2)
theta = np.arctan2(y,x)
anr = a*(1-e**2)/(1-e*np.cos(theta))
diffr = np.sqrt((r-anr)**2)
diffCollector.append(diffr)

The histogram of the values contained in
diffCollector is shown in Fig. 108. It has a

0.0000 0.0001 0.0002 0.0003 0.0004
Radial difference in au

0

200

400

600

800

1000

Fig. 108.— Histogram of the square difference between fitted
ellipse and simulated ellipse

highly structured shape, and no doubt one could learn
a lot about the systematic errors involved in the sim-
ulation by understanding that cascade-like structure.
Such analysis is far beyond our current scope; for our
purposes, we note that this looks definitely non-random
and, importantly, that the largest deviation is 4/10 000
of an astronomical unit. Given that the length scales of
our orbit (half axis length, circumference) are on a scale
of 1 astronomical unit, that deviation is fairly small, and
our simulated planet appears to have an elliptical orbit.

Next, for Kepler’s second law, which says that the con-
necting line between the planet and the central mass
sweeps out equal areas in equal time intervals. Each of
our time steps defines the same time interval, so if we
calculate the triangle swept out in each time step (whose
three vertices are the planet’s position at the beginning
and at the end of the time step, and the location of the
central mass), we should always obtain the same area.
For each such triangle, we know the x and y coordinates
of all three vertices, and thus can calculate all the side
lengths a, b, c using the Pythagorean theorem. With this
information, we can use Heron’s formula to calculate the
triangle’s area as

A =
√
s(s− a)(s− b)(s− c) (46)

where s = (a+ b+ c)/2 is the triangle’s semi-perimeter.
(Alternatively, we can use half of the cross product of the
two position vectors, now viewed as three-dimensional
vectors, to obtain the same result.) The following bit of

code collects the relative deviation of each such triangle
area from the mean in an array relativeDiff:

areaCollector=np.array([])
for x1, x2, y1, y2 in zip(xCollector[1:],

xCollector[:-1],yCollector[1:],
yCollector[:-1]):
a = np.sqrt(x1**2+y1**2)
b = np.sqrt(x2**2+y2**2)
c = np.sqrt((x1-x2)**2+(y1-y2)**2)
s = 0.5*(a+b+c)
A = np.sqrt(s*(s-a)*(s-b)*(s-c))
areaCollector = np.append(areaCollector,A)

averageArea=np.average(areaCollector)
relativeDiff =

(areaCollector-averageArea)/averageArea

A histogram of the values in relativeDiff shows that all
those areas, swept out in the same time interval, are in-
deed very close to their average value, as Fig. 109 shows.
The distribution shows that we do have a strong maxi-

4 2 0 2 4
1e 12

0

500

1000

1500

2000

2500

3000

3500

4000

Fig. 109.— Histogram of the relative difference from the average
of the triangle areas corresponding to each time step

mum at the average area value, with small (a few parts
in a trillion!) fluctuations to smaller and larger values.

Next, to Kepler’s third law. In Kepler’s own version,
this links the orbital periods T and major elliptical half
axis a of different planets orbiting the same central mass,
stating that the ratio a3/T 2 is the same for all of them.
We did not simulate planets with different initial condi-
tions (although we could), and thus will check the more
advanced form of Kepler’s law found by Newton, which
states that

a3

T 2
=
GM

4π2
(47)

(in the limit we have simulated, namely where the plan-
etary mass m is small against the central mass M). We
have already estimated a. Let us do the same for T . To
this end, I have plotted the y coordinate of our planet
against time in Fig. 110. This is unsurprisingly period-
ical. In order to find out the period, we fold the time
evolution: we assume a value for the period T , and de-

69

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time in years

0.4

0.2

0.0

0.2

0.4
y

co
or

di
na

te
 in

 a
u

Fig. 110.— The y coordinate of our simulated planet over time

fine the phase φ in terms of this period as

φ =
t

T
mod 1. (48)

All integer multiples of the period T get mapped to 0,
all times that can be written as

t = (n+ f) · T (49)

with integer n and 0 ≤ f < 1 get mapped to f . The
quick-and-dirty way of finding the correct period T is to
vary the value by hand, and see whether or not the re-
sulting curves coincide. From Fig. 110, we can read off
that the period is somewhat less than one year. Fig. 111
shows the resulting plot for T = 0.8 a. The fact that we

0.0 0.2 0.4 0.6 0.8 1.0
Phase

0.4

0.2

0.0

0.2

0.4

y
co

or
di

na
te

 in
 a

u

Fig. 111.— Phase plot, with an assumed periodicity of T = 0.8a,
for our simulated orbit

still see separate, similar curves shows that we have not
quite hit on the correct period yet. By slowly decreas-
ing T , and re-plotting, I can bring those separate curves
to coincidence. After a few dozen tries, the final round
with a microscopic look at the steepest curve region via
plt.xlim(0.475,0.525), I arrive at T = 0.7313 a. Note
that this is very similar to how you determine the orbital
of an exoplanet by folding the light curve data (from the
transit method) or Doppler shift data (in the radial ve-
locity method). We could think about automatising this,
sorting the phase values into different arrays indexed by
the integer part of t/T , and minimising the differences
between those partial curves, but for our little test, I
consider the trial-and-error approach sufficient.

Thus, our final test is to see if this T value indeed sat-
isfies equation (47). The right-hand side of that equation
is

1
au3

a2
(50)

by definition, since the Earth does have a semimajor axis
of length 1 au (up to and including the sixth significant
degree), and an orbital period of 1 year. By our esti-

mates, our simulation satisfies(a

1 au

)3

·
(

1 a

T

)2

= 0.99991. (51)

The two values coincide up to one part in 10 000. Our
simulation reproduces Kepler’s third law, as well.

This concludes our brief excursion into the realm of
simulations. We have, as ever, only scratched the sur-
face, but along the way, you have encountered some of
the pitfalls and characteristics of numerical simulations,
notably the concept of numerical errors, the question of
stability, and the importance of choosing a suitable al-
gorithm. What we did not encounter was the limita-
tion imposed by the available computing power. For our
purposes, a simple script which took a few seconds to
run was sufficient. As simulations become more com-
plex, computing time increases, and can become a lim-
iting factor. There are various ways of addressing this
problem, and pushing the limit. Powerful hardware is
one of them. Parallelising calculations, that is, having
multiple processors (or processor cores) tackle different
parts of the problem simultaneously, can be a powerful
strategy for many (but not all) simulation problems. Par-
allelisation is achieved by linking multiple processors in
a way that automatically distributes calculations among
the available cores. GPUs, graphics processing units,
which commonly operate at lower frequencies but con-
sist of a greater number of cores, are frequently used for
the purpose. Projects like the IllustrisTNG simulation
mentioned at the beginning of this section push the en-
velope using an immense amount of computing power.
The most calculation-intensive run of that simulation,
TNG300-1, involved 24 000 cores, adding up to a total
CPU time of nearly 34 million hours.37

We have also only reproduced the simplest type of sim-
ulation, namely an N-body simulation that follows the
evolution of separate particles. Other applications in
astrophysics require simulations to deal with fluid me-
chanics, dividing space into cells whose fluid content and
properties (such as temperature, entropy and flow prop-
erties) are then followed over time.38

As in the case of reducing and analysing observa-
tional data, there are packages and libraries that will
help you set up specific more advanced simulations us-
ing Python.39 However, should you go further in this
direction, you are likely to reach a point where increased
speed is so important that Python is not fast enough for
what you are about to do. More advanced simulations
typically use so-called compiled programming languages,
such as C and its different incarnations, where the code
is first translated into a “compiled code,” that is, into
machine-readable instructions that can be carried out by
the computer directly. Compiled languages are typically
faster than interpreted languages like Python, where the
translation into machine code happens on the fly as the
program is executed. An example is the Gadget-2 code

37 The numbers have been taken from the article by Dylan et al.
2017, [http://adsabs.harvard.edu/abs/2018MNRAS.475..624N]

38 A step-by-step to writing a hydrodynamics code can be found
in [https://github.com/python-hydro/how to write a hydro code],
by Michael Zingale.

39 An example is GalPy by Jo Bovy, 2014, [arXiv:1412.3451].

http://adsabs.harvard.edu/abs/2018MNRAS.475..624N
https://github.com/python-hydro/how_to_write_a_hydro_code
https://arxiv.org/abs/1412.3451

70

by Volker Springel et al.40 But by the time you work at
that level, you have moved far beyond the basic intro-
duction presented in this text.

12. CONCLUSION

Working with astronomical data requires a combina-
tion of skills. If you have worked through this text, re-
producing the analytical tasks on your own computer,
using DS9, TOPCAT and Python, you should have ac-
quired basic proficiency in a number of these skills, and
you should now be familiar with several key tools, both
conceptual (histograms! diagrams!) and practical (how
to use different kinds of software to achieve specific pur-
poses).

As we have seen on several occasions, we have only
just scratched the surface. But that is perfectly fine! If
you dedicate your career to research, you will continue
to build on what you know. What you have learned here
should allow you to start that life-long process.

You will also have seen that the knowledge needed
for data analysis falls into different categories. It goes
without saying that working with astronomical data re-
quires knowledge of physics, astronomy, and mathemat-
ics, specifically statistics. When you begin working on a
new topic, then likely as not in the beginning, you will
not fully understand what you are doing, and how the
different elements you are dealing with fit together prop-
erly. Your goal should be to, eventually, reach the stage
where you do understand what is going on. Such knowl-
edge is required if you want to understand your results,
but crucially also if you want to understand the limita-
tions of your data, and possible ways of improvement.

As you learn to use new tools, and more advanced
tools, your newly acquired knowledge might also open
up new opportunities for exciting science. Applying a
tool that others did not think to apply could be the key
step towards finding a new result. In this respect, it pays
to have an eye out for neighbouring fields (or at least sub-
fields). Could what they are doing in their field help you
achieve something new in yours?

Some of the knowledge you need for data analysis is
a matter of convention. How to perform a certain op-
eration in TOPCAT, or plot a certain kind of diagram,
is nothing you can deduce logically from previous fun-
damental knowledge (although previous experience will
help you find the right answer). If the software in ques-
tion is well documented, it makes sense to familiarise
yourself with the basics; the more common strategy is
to google what you are looking for. Everybody does it.
Reminding yourself how to “matplotlib equal axis ratio”
is just one search field away. Also, if you are working in
an institute, chances are there will be experienced people
you can ask for help with specific problems. Last but not
least, if you need to accomplish a complex task, and you
happen to have a script which does something similar, it
makes sense to get to understand that other script, to try
out variations on what it does, and eventually to adapt
it to your purposes.

Finally, there is meta-knowledge about working with

40 See [https://ascl.net/0003.001], as well as the how-to
for installing and running Gadget-2 by Nathan Goldbaum on
astrobites, at [https://astrobites.org/2011/04/02/installing-and-
running-gadget-2/].

astronomical data. One piece of good advice is to always
look at your data in simple form before attempting com-
plex operations on it. Make a few basic histograms and
diagrams to get a feeling for your data, look at an image,
or make a quick plot of a spectrum — incidentally, you
might find out that your data is somehow completely dif-
ferent from what you expected, and that is a good thing
to know early on!

A fairly universal truth you are likely to learn early
on is how easy it is to make mistakes. One reason is
that, even while each of the elements of your analysis
might be straightforward, code can become fairly volu-
minous fairly quickly once you combine all the different
necessary steps. So what do you do if, at the end of
your analysis, your result is surprising, possibly wrong,
or even obviously wrong? Conversely, if things turn out
as expected, how can you be sure that this is not the
result of several mistakes cancelling each other out, or
almost cancelling? Such questions would not be impor-
tant if your goal was just to create a visually pleasing
astronomical image, for instance. But when you are do-
ing scientific research, you had better understand, and
check, every step of what you are doing; otherwise, you
cannot be sure of your result. Your analysis should con-
tain as many cross-checks as you can come up with, and
have time to implement. After every step, think about
what that step is meant to do, and what you can do to
check that the desired result has indeed be achieved. If
you write up your research, such cross-checks and safe-
guards are likely to make up an important part of your
description of what you did.

Also, make sure your code is comprehensible. The
most important element of this is adding descriptive com-
ments. A person reading your code should be able to fol-
low what you are doing step by step, guided by your code,
but also by your description in the comments. Remember
that the person in question could be you in a few years —
it is amazing how incomprehensible ill-documented code
can become once you return to it a few months or years
after having written it! Meaningful variable names can
help with comprehensibility, too.

Last but not least documenting your code is a mat-
ter of scientific accountability. Science should be repro-
ducible. Your research publications should tell your col-
leagues what you have done, so they can build on your
results, but also critically examine what you have done.
In an ideal world, every scientific article would be accom-
panied by data files and script files; running the script
on the data, you should be able to reproduce the article’s
results on your own computer.41 (And, in digging into
the script, you would have a complete, unambiguous rep-
resentation of what the article’s authors have done with
their data!) We’re not there yet, but why not introduce
those good practices right now? Comment and document
your code. Preserve the definite version of your analysis
scripts together with your article. That way, you will
always be able to understand what you did earlier. If
colleagues ask, you can give them your script and your
data, and they can check for themselves what you have
done. (And yes, I know you might be worried about
giving away your trade secrets. If that is the case, you
could still make your scripts available after some time.

41 Cf. Weiner et al. 2009, [https://arxiv.org/abs/0903.3971].

https://ascl.net/0003.001
https://astrobites.org/2011/04/02/installing-and-running-gadget-2/
https://astrobites.org/2011/04/02/installing-and-running-gadget-2/
https://arxiv.org/abs/0903.3971

71

The competitive edge a specific script gives you is likely
to become less important over time in any case.)

If you use someone else’s data, or Python module, or
software, you should make sure to give them appropri-
ate credit. Published astronomical data typically comes
with accompanying publications. Citing those publica-
tions when using the data is the appropriate way of giving
credit to the astronomers involved. As an example, con-
sider the THINGS survey data used in Fig. 22. Using this
image on a slide, you would add the information “Walter
2008,” or “Walter et al. 2008,” and every astronomer
would be able to use the Astrophysics Data Service ADS
at https://ui.adsabs.harvard.edu/ to find the article. If
you are writing in a medium where you can add a link,
add a link. If you are writing in a more formal setting,
put an entry into your reference section, and refer to
that entry in your text. For specific software or larger
data sets, there is often a standard paragraph of acknowl-
edgement (“boilerplate”) you are asked to include in your
text. You can find examples in the Acknowledgements
section, below. Science is a networked activity, and giv-
ing credit where credit is due is an important part of
good scientific practice.

Astronomical data has never been as accessible as it is
now, and computing power never as cheap. Observatory
and telescope archives provide images and spectra, cat-
alogs higher-level data like never before. This is likely
to get even better as new facilities come online, and new
tools become available. It’s an exciting time to work with
astronomical data!

ACKNOWLEDGEMENTS

I would like to thank the anonymous referee and also
Wolfgang Brandner, Roland Gredel and Carolin Liefke
for helpful comments, Fabian Walter for helping with
the THINGS data and Catharina Hock for helpful dis-
cussions.

Working with astronomical data would not be as (com-
paratively) easy without the countless individuals who
have invested time and effort in programming the soft-
ware, packages and libraries used throughout this text.
If you are using the results, please acknowledge them
appropriately. A number of scientific software products
have associated articles that you should cite when us-
ing those products in your scientific work (e.g. see the
footnotes for the table on p. 41).

SAOImageDS9 development has been made possi-
ble by funding from the Chandra X-ray Science Cen-
ter (CXC) and the High Energy Astrophysics Science
Archive Center (HEASARC) with additional funding
from the JWST Mission office at Space Telescope Sci-
ence Institute, cf. the article Joye & Mandel 2003,
[http://adsabs.harvard.edu/abs/2003ASPC..295..489J].

TOPCAT was developed, and keeps being developed
further, by Mark Taylor (University of Bristol). A de-
scription of the application can be found in Taylor 2005,

[http://adsabs.harvard.edu/abs/2005ASPC..347...29T].
This work makes use of observations from the LCOGT

network, which is described in Brown et al. 2013,
[http://adsabs.harvard.edu/abs/2013PASP..125.1031B].

Funding for SDSS-III, from which I have used some
data, has been provided by the Alfred P. Sloan Foun-
dation, the Participating Institutions, the National Sci-
ence Foundation, and the U.S. Department of En-
ergy Office of Science. The SDSS-III web site is
[http://www.sdss3.org/]. SDSS-III is managed by the
Astrophysical Research Consortium for the Participat-
ing Institutions of the SDSS-III Collaboration including
the University of Arizona, the Brazilian Participation
Group, Brookhaven National Laboratory, Carnegie Mel-
lon University, University of Florida, the French Partici-
pation Group, the German Participation Group, Harvard
University, the Instituto de Astrofisica de Canarias, the
Michigan State/Notre Dame/JINA Participation Group,
Johns Hopkins University, Lawrence Berkeley National
Laboratory, Max Planck Institute for Astrophysics, Max
Planck Institute for Extraterrestrial Physics, New Mex-
ico State University, New York University, Ohio State
University, Pennsylvania State University, University of
Portsmouth, Princeton University, the Spanish Partici-
pation Group, University of Tokyo, University of Utah,
Vanderbilt University, University of Virginia, University
of Washington, and Yale University.

Some of the sample files used here are based on obser-
vations made with the NASA/ESA Hubble Space Tele-
scope, and obtained from the Hubble Legacy Archive,
which is a collaboration between the Space Telescope
Science Institute (STScI/NASA), the Space Telescope
European Coordinating Facility (ST-ECF/ESA) and the
Canadian Astronomy Data Centre (CADC/NRC/CSA).

The astronomical data query language ADQL was de-
veloped by the Virtual Observatory Query Language
Working Group, cf. the description in Ortiz et al. 2008,
[http://www.ivoa.net/documents/latest/ADQL.html].

This work has made use of data from the Euro-
pean Space Agency (ESA) astrometry mission Gaia
([https://www.cosmos.esa.int/gaia]), as processed
by the Gaia Data Processing and Analysis Consor-
tium (DPAC, see more at [https://www.cosmos.esa.
int/web/gaia/dpac/consortium]). Funding for the
DPAC has been provided by national institutions, in
particular the institutions participating in the Gaia
Multilateral Agreement; cf. Gaia Collaboration 2016,
[http://adsabs.harvard.edu/abs/2016A&A...595A...1G],
and the description in Gaia Collaboration 2018,
[http://adsabs.harvard.edu/abs/2018arXiv180409365G].

This paper was built using the Open Journal of As-
trophysics LATEX template. The OJA is a journal which
provides fast and easy peer review for new papers in the
astro-ph section of the arXiv, making the reviewing pro-
cess simpler for authors and referees alike. Learn more
at http://astro.theoj.org.

https://ui.adsabs.harvard.edu/
http://adsabs.harvard.edu/abs/2003ASPC..295..489J
http://adsabs.harvard.edu/abs/2005ASPC..347...29T
http://adsabs.harvard.edu/abs/2013PASP..125.1031B
http://www.sdss3.org/
http://www.ivoa.net/documents/latest/ADQL.html
https://www.cosmos.esa.int/gaia
https://www.cosmos.esa.int/web/gaia/dpac/consortium
https://www.cosmos.esa.int/web/gaia/dpac/consortium
http://adsabs.harvard.edu/abs/2016A&A...595A...1G
http://adsabs.harvard.edu/abs/2018arXiv180409365G
http://astro.theoj.org

	1 Introduction
	1.1 Types of data
	1.2 Types of tools
	1.3 Concepts and operations
	1.4 Software/language choices

	2 Data basics: images, spectra, tables
	2.1 Images: Colour, brightness, pixels
	2.2 Images: PSF and noise
	2.3 Images: Noise and flatfielding
	2.4 Images: astronomical information
	2.5 Spectra
	2.6 Data cubes
	2.7 High-level data: catalogues and tables

	3 SAOImage DS9 and astronomical images
	3.1 Loading a Hubble image
	3.2 A first look at the Eagle Nebula M16
	3.3 Coordinates: Navigating the image
	3.4 Meta-Information: the FITS header
	3.5 Making a colour image
	3.6 Catalogs
	3.7 Photometry with regions and statistics
	3.8 Profiles

	4 TOPCAT and table data
	4.1 Opening a table file
	4.2 Making a sky plot
	4.3 Virtual Observatory (VO) services
	4.4 Basic ADQL queries
	4.5 Selections and subsets
	4.6 More on plotting
	4.7 Histograms
	4.8 A quick look at a spectrum

	5 Getting started with Python
	5.1 Installing Python
	5.2 Using Python in Spyder
	5.3 Modules

	6 Basic operations with Python
	6.1 Meet your new versatile calculator
	6.2 Units and constants
	6.3 Random numbers
	6.4 Strings
	6.5 Conditions
	6.6 User-defined functions
	6.7 Timing your code

	7 Taming long data sets: Lists in Python
	7.1 A list of galaxies
	7.2 Doing something element by element
	7.3 Operations involving more than one list
	7.4 Creating lists simultaneously
	7.5 Numpy arrays
	7.6 Variable types, lists, arrays and speed
	7.7 Strings and base n numbers as lists

	8 Basic plotting with Python and Matplotlib
	8.1 Plotting a function
	8.2 Making a plot look better
	8.3 Annotating plots
	8.4 Figure size
	8.5 Scatter plots
	8.6 Fitting data
	8.7 Histograms
	8.8 Saving figures
	8.9 Glueing data sets

	9 Importing table data into Python
	9.1 Opening a FITS table in python
	9.2 Opening an ASCII table in python
	9.3 Accessing astronomical data bases

	10 Astronomical image manipulation with Python
	10.1 FITS files and python
	10.2 Displaying (showing) an image
	10.3 Pixelwise operations

	11 A simple simulation
	11.1 Step-by-step numerical integration: Euler method
	11.2 Numerical errors
	11.3 Velocity Verlet algorithm
	11.4 A simple two-dimensional simulation

	12 Conclusion

