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ABSTRACT

Aims. We explore the long-term evolution of young protoplanetary disks with different approaches to computing the thermal structure
determined by various cooling and heating processes in the disk and its surroundings.
Methods. Numerical hydrodynamics simulations in the thin-disk limit were complemented with three thermal evolution schemes: a
simplified β-cooling approach with and without irradiation, where the rate of disk cooling is proportional to the local dynamical time;
a fiducial model with equal dust and gas temperatures calculated taking viscous heating, irradiation, and radiative cooling into account;
and a more sophisticated approach allowing decoupled dust and gas temperatures.
Results. We found that the gas temperature may significantly exceed that of dust in the outer regions of young disks thanks to additional
compressional heating caused by the infalling envelope material in the early stages of disk evolution and slow collisional exchange of
energy between gas and dust in low-density disk regions. However, the outer envelope shows an inverse trend, with the gas temperatures
dropping below that of dust. The global disk evolution is only weakly sensitive to temperature decoupling. Nevertheless, separate dust
and gas temperatures may affect the chemical composition, dust evolution, and disk mass estimates. Constant-β models without stellar
and background irradiation fail to reproduce the disk evolution with more sophisticated thermal schemes because of the intrinsically
variable nature of the β-parameter. Constant-β models with irradiation more closely match the dynamical and thermal evolution, but
the agreement is still incomplete.
Conclusions. Models allowing separate dust and gas temperatures are needed when emphasis is placed on the chemical or dust
evolution in protoplanetary disks, particularly in subsolar metallicity environments.
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1. Introduction

Protoplanetary disks are an important ingredient of star and
planet formation. They form during the gravitational contraction
of rotating pre-stellar cloud cores thanks to the conservation of
angular momentum of the infalling material. It is thought that
most of the core material is processed by the disk before it lands
on the growing protostar or leaves the system through proto-
stellar jets and outflows. This processing includes alterations in
the chemical composition and growth of submicron particles to
centimeter-sized pebbles, providing building blocks for planets.
These processes critically depend on the thermal balance in the
disk and knowing the properties of protoplanetary disks is there-
fore of prime importance for our understanding of star and planet
formation.

The studies of protoplanetary disks have traditionally fol-
lowed two separate pathways. Global simulations follow the
collapse of pre-stellar cores to the protostellar stage charac-
terized by the formation of a star and protostellar disk (e.g.,
Machida et al. 2010; Joos et al. 2013; Seifried et al. 2013;
Tsukamoto et al. 2015). The forming disks usually show a very
complex behavior depending on the mass of the core, amount of
initial rotation in the core, and the strength of magnetic fields
(e.g., Bate 2018; Wurster & Bate 2019). The interaction with the
environment in the form of jets, outflows, and infalling material

makes the interpretation of numerical simulations a challeng-
ing task. An alternative approach is to look into the evolution
of isolated, so to say, already-formed disks (e.g., Kley 1999;
Boss 2002; Stamatellos et al. 2007; Mayer et al. 2007). Such an
approach allows us to focus on particular aspects of disk evolu-
tion and usually permits a better numerical resolution, making
this approach particularly valuable for our understanding of the
subtleties of star and planet formation.

One of the important aspects of disk evolution is gravita-
tional instability and fragmentation, which is thought to be a pos-
sible gateway for the formation of giant planets and brown dwarfs
(e.g., Boss 2002; Mayer et al. 2007; Boley et al. 2010; Vorobyov
2013; Meru 2015; Nayakshin 2017; Mercer & Stamatellos 2017).
Gravitational instability and fragmentation are particularly sen-
sitive to the disk mass, but also to the thermal balance in the disk
controlled largely by disk cooling, and viscous and stellar heat-
ing. Starting from Gammie (2001), it has become increasingly
popular to employ the so-called β-parameterization to describe
the cooling processes in the disk when studying the disk propen-
sity to gravitational fragmentation (e.g., Rice et al. 2003; Cossins
et al. 2009; Meru & Bate 2011; Boss 2017; Deng et al. 2017). In
this approach the rate of disk cooling is parameterized in terms
of the β-parameter, which is the product of the local cooling time
tc and local angular velocity Ω. The popularity of this approach
can be explained by its simplicity, which avoids the complicated

Article published by EDP Sciences A102, page 1 of 19

https://www.aanda.org
https://doi.org/10.1051/0004-6361/202037841
mailto:eduard.vorobiev@univie.ac.at
http://www.edpsciences.org


A&A 638, A102 (2020)

physics and numerics often involved with solving for the full
energy balance equation and at the same time provides valuable
insights into an important physical process: disk gravitational
fragmentation.

The often used approach is to adopt a uniform β-parameter
throughout the disk, but vary its value to determine its effect on
disk gravitational fragmentation. There is, however, no justifica-
tion that the β-parameter should be uniform throughout the disk.
Moreover, it is not clear if the β-parameterization accurately
describes the thermal balance in the disk. Several numeri-
cal studies address the disk propensity to fragment depending
on whether the simplified β-cooling or a more sophisticated
cooling–heating scheme is used (e.g., Gammie 2001; Johnson
& Gammie 2003), but a systematic study of the temperature
distribution in the disk on global evolutionary timescales has
not been performed yet. It is therefore important to under-
stand the risks that are involved with using the simplified
β-approximation.

In this paper we consider three different approaches to
describing the thermal balance in the disk. First, we consider
the scheme that takes radiative cooling, stellar and viscous heat-
ing, and PdV work into account in the limit of equal dust and
gas temperatures. This approach has been extensively used in
one- and two-dimensional disk dynamics simulations (Johnson
& Gammie 2003; Rice & Armitage 2009; Vorobyov & Basu
2010; Zhu et al. 2012) and also adapted to three-dimensional
smoothed-particle simulations (Stamatellos et al. 2007). Sec-
ond, we introduce a new cooling–heating scheme that allows
a separate calculation of the gas and dust temperatures in
protoplanetary disks. This scheme is similar in methodology
(but not exactly the same) to the methods earlier presented by
Pavlyuchenkov et al. (2015) and Bate & Keto (2015). We par-
ticularly search for disk regions where the gas temperature can
deviate notably from that of dust. Finally, we consider the simpli-
fied β-cooling and determine the applicability of this simplified
approach in describing disk evolution.

We use disk models in the thin-disk limit to study the effect
of different cooling–heating schemes. A simplified disk dynam-
ics allows us to focus on the thermal properties of the disk,
and to run disk simulations for a much longer time than in
full three-dimensional simulations. Nevertheless, we believe that
our results regarding the applicability of the β-approximation
and importance of separate dust and gas thermal evolution
will remain valid in fully three-dimensional disk models. More
importantly, our thermal model can find applications in simula-
tions of low-metallicity disks, where decoupling of dust and gas
temperatures is expected to be significant.

The paper is organized as follows. In Sect. 2 we describe
in detail different cooling–heating schemes that we used in our
disk models. In Sect. 3 we describe the disk evolution using
the cooling–heating scheme with separate dust and gas temper-
atures. In Sect. 4 we compare the disk evolution in models with
separate and similar dust and gas temperatures. In Sect. 5 we
consider models with a simplified β-cooling. The main results
are summarized in Sect. 6.

2. Model description

In this section, we describe the main aspects of our model
regarding the gas dynamics computations, while the subsequent
subsections elaborate on computations of the thermal balance in
the disk. We use numerical hydrodynamics simulations in the
thin-disk limit to compute the formation and global evolution
of young circumstellar disks. To avoid time steps that are too

small, we set a dynamically inactive sink cell in the center of our
computational domain with a radius of rsc = 5 au.

The starting point of each simulation is the gravitational
collapse of a pre-stellar core. In the adopted thin-disk approxi-
mation, the core has the form of a flattened pseudo-disk, a spatial
configuration that can be expected in the presence of rotation
and large-scale magnetic fields (e.g., Basu 1997). As the collapse
proceeds, the inner regions of the core spin up and a centrifugally
balanced circumstellar disk forms when the inner infalling lay-
ers of the core hit the centrifugal barrier near the sink cell. The
material that has passed to the sink before the instance of cir-
cumstellar disk formation constitutes a seed for the central star,
which grows further through accretion from the circumstellar
disk. The infalling core continues to land at the outer edge of the
circumstellar disk until the core depletes. The infall rates on the
circumstellar disk are in agreement with what can be expected
from the free-fall collapse (Vorobyov 2010). Computations con-
tinue up to 0.5 Myr, thus covering the entire embedded phase
and the early T Tauri phase of disk evolution.

We take into account turbulent viscosity described via the
Shakura & Sunyaev α-parameterization and disk self-gravity.
The forming protostar is not just a source of gravity. Its char-
acteristics, such as the radius and photospheric luminosity, are
calculated in line with the disk evolution using the stellar
evolution tracks obtained with the STELLAR code (Yorke &
Bodenheimer 2008). These characteristics are then used to calcu-
late the total stellar luminosity and the radiation flux impinging
the surface of the disk and contributing to its heating in models
where detailed disk cooling and heating are taken into account.

The equations of mass and momentum in the thin-disk limit
are

∂Σ

∂t
= −∇p ·

(
Σup

)
, (1)

∂

∂t

(
Σup

)
+

[
∇ ·

(
Σup ⊗ up

)]
p

= −∇pP + Σgp + (∇ ·Π)p , (2)

where the subscripts p and p′ refer to the planar components
(r, φ) in polar coordinates, Σ is the gas mass surface density, P
is the vertically integrated gas pressure calculated via the ideal
equation of state as P = (γ − 1)e, γ is the ratio of specific heats,
up = vr r̂ + vφφ̂ is the velocity in the disk plane, gp = gr r̂ + gφφ̂ is
the gravitational acceleration in the disk plane (including that
of the disk and the star), and ∇p = r̂∂/∂r + φ̂r−1∂/∂φ is the
gradient along the planar coordinates of the disk. Turbulent vis-
cosity enters the basic equations via the viscous stress tensor Π,
and we calculate the magnitude of kinematic viscosity ν using
the α-parameterization with a spatially uniform α-parameter.
Two limiting cases were considered: an MRI-active disk with
α = 0.01 and an MRI-suppressed disk with α = 10−4.

2.1. β-cooling

In its simplest form, the energy balance equation can be
described as

∂e
∂t

+ ∇p ·
(
evp

)
= −P

(
∇p · vp

)
−

e
tc

+ (∇ · v)pp′ : Πpp′ , (3)

where e is the internal energy of gas per surface area. The char-
acteristic cooling time is related to the β-parameter as tc = β/Ω.
This approach, hereafter referred to in the text as the β-cooling
scheme, takes into account the advection of internal energy with
the gas flow, heating and cooling through adiabatic compression
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and expansion of gas flows (first term on the right-hand side),
radiative cooling approximated by the β-parameter, and viscous
heating (last term on the right-hand side). We note that in many
studies with the β-cooling scheme, but not in our paper, vis-
cous heating is neglected. To avoid a catastrophic overcooling
of the disk we turn off the β-cooling term as soon as the gas
temperature drops below a threshold value set equal to 4 K. This
β-cooling approach was employed in studies of disk fragmenta-
tion in, for example, Rice et al. (2003), Meru & Bate (2011), Boss
(2017), and Rice & Nayakshin (2018). In our study, the energy
Eq. (3) is closed with the ideal equation of state P = e(γ − 1) for
a perfect gas, for which the ratio of specific heats is set equal to
a constant value of γ = 1.4.

One drawback of the above approach is that it does not take
stellar irradiation into account, although this heating mechanism
can be important once the star has formed. There are various
modifications to the standard β-cooling scheme (see, e.g., Baehr
& Klahr 2015), but in this study we adopt the form

∂e
∂t

+ ∇p ·
(
evp

)
= −P

(
∇p · vp

)
−

e − eirr

tc
+ (∇ · v)pp′ : Πpp′ , (4)

where eirr is the internal energy per surface area defined exclu-
sively by stellar and background irradiation as eirr = ΣRTirr/µ,
with the mean molecular weight set equal to µ = 2.33. Here, Tirr
is the irradiation temperature calculated as

T 4
irr = T 4

bg +
Firr(r)
σ

, (5)

where Tbg is the uniform background temperature set equal to
the initial temperature of the natal cloud core and Firr(r) is the
radiation flux absorbed by the disk surface at a radial distance r
from the central star. The flux is calculated as

Firr(r) =
L∗

4πr2 cos γirr, (6)

where γirr is the incidence angle of radiation arriving at the
disk surface (with respect to the normal) at radial distance r.
The incidence angle is calculated using a flaring disk surface, as
described in Vorobyov & Basu (2010). The stellar luminosity L∗
is the sum of the accretion and stellar photospheric luminosities.
The modified β-cooling term works as a relaxation process on a
timescale tc toward the thermal state defined by Tirr. The stronger
the mismatch between e and eirr, the faster the system strives to
attain the thermal state defined by irradiation (for a fixed value of
β). We note that the other terms on the right-hand side of Eq. (4)
can act to push the thermal balance away from that established
by stellar and background irradiation.

2.2. Similar thermal evolution of gas and dust

A more sophisticated approach to computing the thermal bal-
ance in the disk involves solving the energy equation considering
the effects of viscous heating, disk radiative cooling, and stellar
heating via irradiation. The equation reads

∂e
∂t

+ ∇p ·
(
evp

)
= −P

(
∇p · vp

)
− Λ + Γ + (∇ · v)pp′ : Πpp′ , (7)

where Λ and Γ are the cooling and heating rates due to dust
cooling and stellar (and background) irradiation, respectively.

This approach, hereafter referred to as the thermal evolution
scheme 1 (or ThES1), was employed to study disk fragmentation
in, for example, Johnson & Gammie (2003), Vorobyov & Basu

(2010), and Zhu et al. (2012). The difference between these stud-
ies lies in the degree of sophistication in calculating the radiative
cooling and disk heating, in neglecting or taking viscous heating
into account. For instance, Johnson & Gammie (2003) consid-
ered only a cooling term and neglected disk heating through
stellar irradiation and viscosity. Their cooling term reads

Λ =
16
3
σT 4

mp
τR

1 + τ2
R

, (8)

where τR is the mean Rosseland optical depth, Tmp is the
midplane temperature of dust (and gas), and σ is the Stefan–
Boltzmann constant. Zhu et al. (2012) added irradiation heating
by the central star (and also background) in the form

Γ =
16
3
σT 4

irr
τR

1 + τ2
R

. (9)

Vorobyov & Basu (2010) also considered viscous heating due to
turbulence via α-parameterization.

The form of the cooling–heating terms may vary depending
on the degree of sophistication in calculating radiative cooling of
dust from the disk surface. In this work we use the expressions
derived in Dong et al. (2016),

Λ =
8τPσT 4

mp

1 + 2τP + 3
2τRτP

, (10)

Γ =
8τPσT 4

irr

1 + 2τP + 3
2τRτP

, (11)

where τP is the Planck optical depth. We note that the cooling
and heating rates in Dong et al. (2016) were written for one side
of the disk and need to be multiplied by a factor of 2. The energy
Eq. (7) is closed with the ideal equation of state P = e(γ − 1),
where the ratio of specific heats is set equal to a constant value
of γ = 1.4. We also note that the cooling and heating terms of
the form similar to Eqs. (8) and (9) are often used together with
the viscous equation of Pringle (1981) for the gas surface density
to compute the thermal balance in the disk (e.g., Rice et al. 2010;
Kimura 2016).

2.3. Different thermal evolution of gas and dust

The thermal evolution scheme considered in Sect. 2.2 makes no
difference between the gas and dust temperatures. This is a valid
approximation at high densities when collisions between gas
molecules and dust particles are sufficiently frequent to estab-
lish a thermal equilibrium between these two disk subsystems
on timescales much shorter than the dynamical one. However,
it is not clear a priori if this condition is fulfilled throughout
the entire extent of a protostellar or protoplanetary disk. In the
outer disk regions densities may be too low to provide strict ther-
mal coupling between gas and dust. In this section we present a
new cooling–heating scheme, referred to as the thermal evolu-
tion scheme 2 or ThES2, which is designed to lift the limitation
of equal gas and dust temperatures. In ThES2 we also have a
spatially and temporally varying ratio of specific heats γ, thus
lifting another limitation of the β-cooling and ThES1 schemes,
for which a perfect gas with constant γ was assumed.

In ThES2 we do not make a clear distinction between the
cooling and heating rates, as was done with Λ and Γ in the previ-
ous sections, and we introduce the integrated rate of energy loss
or gain per surface area Qtot. The evolution equation for the gas
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internal energy per surface area in ThES2 reads as

∂e
∂t

+ ∇p ·
(
evp

)
= −P

(
∇p · vp

)
− Qtot + (∇ · v)pp′ : Πpp′ , (12)

where Qtot is defined as

Qtot = (Qcont + QH2 + QHD + Qchem + Qmetal) 2H, (13)

where H is the vertical scale height calculated assuming a local
hydrostatic equilibrium in the gravitational field of the star and
disk (see Vorobyov & Basu 2009), Qcont is the rate of radiative
energy loss (or gain) in the infrared continuum, QH2 is the H2 line
cooling rate, QHD is the HD line cooling rate, Qchem is the chemi-
cal cooling–heating rate (through chemical reactions), and Qmetal
is the metal line cooling–heating rate. All constituents of Qtot are
volumetric cooling or heating rates and, for simplicity, they are
assumed to be independent of the vertical distance from the disk
midplane. This assumption allows us to convert the volumetric
rates to the rates per surface area by means of vertical integra-
tion and multiplication by the disk thickness 2H. We describe
how to calculate these individual cooling rates below.

The net rate of continuum cooling by energy transport from
gas to radiation per unit volume is

Qcont = 4π (η − χaJ) , (14)

where η is the emission coefficient, J is the mean intensity, and
χa is the absorption coefficient, given by

χa = (κP,d + κP,g)ρ, (15)

with the mass density ρ. We calculate the Planck mean opaci-
ties using the tables from Semenov et al. (2003) for the dust and
Mayer & Duschl (2005) for the gas. We note that Semenov opac-
ities are defined per unit gas mass assuming a dust-to-gas mass
ratio of 1:100. The emission coefficient is

η =
σρ

π

(
κP,gT 4

g + κP,dT 4
d

)
, (16)

where Tg and Td are the gas and dust temperatures, respectively.
The gas temperature is determined from the ideal equation of
state P = ΣRTg/µ, where µ is the mean molecular weight, σ
is the Stefan–Boltzmann constant, and R is the universal gas
constant.

The dust temperature is determined in the steady-state limit
by the energy balance on dust grains due to the thermal emission,
absorption, and collision with gas (Omukai et al. 2010),

κP,dB(Td) = κP,dJ + Γcoll, (17)

where B(T ) is the Planck function given by

B(T ) =
σ

π
T 4, (18)

where T is the temperature of dust or stellar irradiation (see
Eq. (20) below) and Γcoll is the heating rate of dust through
collisions with gas particles. The collisional heating rate is
(Hollenbach & Mckee 1979)

Γcoll = 4.4 × 10−6 ( f /ρ)dust nH

(
Tg

1000 K

)1/2 (
Tg − Td

)
, (19)

where ( f /ρ)dust is the total volume of dust per unit gas mass
and f is the mass fraction of dust grains, both taken from

Pollack et al. (1994). We note that the steady-state assumption
for the dust temperature allowed us to eliminate Γcoll from the
gas internal energy equation by rewriting Γcoll in terms of the
Planck function and the mean intensity.

The mean intensity used in Eqs. (14) and (17) is

J =
1

1 + x

(
B(Tirr) + x

η

χa

)
, (20)

where x is the function that smoothly connects the optically thin
and thick limits, written by Tanaka & Omukai (2014) as

x = τP +
3
4
τPτR, (21)

with the Planck and Rosselanck mean optical depths τP and
τR, respectively. The Planck (Rosseland) mean optical depth is
calculated as

τP(or R) =
1
2

(
κP(or R),d + κP(or R),g

)
Σ. (22)

We obtain the Rosseland mean opacities in the similar manner to
the Planck mean opacities.

The H2 and HD-line cooling rates are calculated by the
following similar form:

QH2(HD) = βesc,H2(HD)QH2(HD),thine−
√
τPτR . (23)

Here QH2(HD),thin is the cooling rate in the optically thin regime
given by the fitting function for H2 from Glover (2015) and
for HD from Flower et al. (2000). We take into account the
line-averaged escape probability β to consider the effect of pho-
ton trapping in the large column density case. The values of
line-averaged escape probabilities for H2 and HD are obtained
by using the fitting functions in Fukushima et al. (2018) and
Eq. (A.2).

The chemical cooling and heating are the processes associ-
ated with chemical reactions. We follow the chemical evolution
of eight species (H, H2, H+, H−, D, HD, D+, and e) and take
into account the 21 hydrogen and 6 deuterium reactions sum-
marized in Table B.1. We consider H ionization–recombination
and H2 dissociation–formation as the chemical cooling–heating
processes. The chemical cooling rate is

Qchem =

(
εH

dy(H+)
dt

− εH2

dy(H2)
dt

)
nH, (24)

where εH = 13.6 eV and εH2 = 4.48 eV are the binding energies.
The chemical fraction of species i is defined using the number
density of species i, n(i), and that of hydrogen nuclei nH as

y(i) =
n(i)
nH

. (25)

The number density of hydrogen nuclei is

nH =
ρ

(1 + 4yHe)mH
, (26)

where yHe is the number fraction of He relative to hydrogen
nuclei and mH is the hydrogen nuclei mass.

We consider the atomic fine-structure line emission of CII
and OI as the metal line cooling Qmetal. We model CII as a two-
level system and OI as a three-level system and count level popu-
lations from the statistical balance among each level. We take the
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Table 1. Model parameters.

Model Mcore βc Ω0 r0 Σg,0 rout α
[M�] [%] [km s−1 pc−1] [au] [g cm−2] [pc]

1v 1.39 0.43 1.56 1560 0.09 0.075 10−2

2v 0.64 0.46 1.73 1560 0.09 0.038 10−2

2 0.64 0.46 1.73 1560 0.09 0.038 10−4

3v 0.28 0.98 2.8 1560 0.09 0.02 10−2

3 0.28 0.98 2.8 1560 0.09 0.02 10−4

Notes. Mcore is the initial core mass, βc is the ratio of rotational to gravitational energy of the core, Ω0 and Σg,0 are the angular velocity and gas
surface density at the center of the core, r0 is the radius of the central plateau in the initial core, and rout is the initial radius of the core, and α is the
value of the viscous α-parameter.

level energies, the spontaneous radiative decay rates, and the col-
lisional deexcitation rate coefficients from Hollenbach & Mckee
(1989). The metal line cooling–heating rate can be divided into
the line cooling–heating rates of CII and OI as follows:

Qmetal = QCII + QOI, (27)

QCII(OI) = yCII(OI)nH (Z/Zlocal)

×
∑

ul

hνulβesc,ulAul fu
S (νul) − B(νul; Trad)

S (νul)
. (28)

Here the chemical fractions of CII and OI are yCII = 9.27 × 10−5

and yOI = 3.568 × 10−4, Z/Zlocal is the metallicity relative to
solar one, hνul is the energy difference between the upper level
u and the lower level l, βesc,ul is the line escape probability, Aul
is the spontaneous radiative decay rate, fu is the occupancy of
upper level, S (νul) is the source function, and B(νul; Trad) is the
Planck function. We note that the metal lines heat gas if the gas
temperature is lower than the irradiation temperature. In this
work, Z/Zlocal is unity. The line escape probability is

βesc,ul =

(
1 − e−τul

τul

)
e−
√
τPτR , (29)

where the optical depth for line emission τul is given by

τul =
c3

8π3/2ν3
ul

Aul

(
gu

gl
fu − fl

)
NCII(OI)

vth
, (30)

where gu,l is the statistical weight of upper level u and lower
level l, NCII(OI) is the column density of CII (OI), and vth is the
thermal velocity. The column density of CII (OI) is

NCII(OI) = 2HnHyCII(OI). (31)

The thermal velocity is

vth =

√
2kBTg

µmH
, (32)

where kB is the Boltzmann constant. The source function is
calculated by

S (νul) =
2hν3

ul

c2

[
gu fl
gl fu
− 1

]−1

. (33)

Our thermal model is based on the minimum model of
Omukai et al. (2005), which includes only CII and OI line
cooling (without solving C and O chemistry) and dust cooling in

addition to the primordial gas thermal and chemical processes.
This model can reproduce the temperature evolution calculated
by more elaborate models relatively well. We also note that line
cooling is only important at low densities (≤104 cm−3).

2.4. Initial and boundary conditions

In this work we considered five model cores, the parameters of
which are provided in Table 1. The initial radial profile of the gas
surface density Σ and angular velocity Ω of the pre-stellar core
has the form

Σ =
r0Σ0√
r2 + r2

0

, (34)

Ω = 2Ω0

( r0

r

)2

√

1 +

(
r
r0

)2

− 1

 , (35)

where Σ0 and Ω0 are the angular velocity and gas surface den-
sity at the center of the core, and r0 is the radius of the central
plateau. This radial profile is typical of pre-stellar cores with a
supercritical mass-to-flux ratio that are formed through ambipo-
lar diffusion, with the specific angular momentum remaining
constant during axisymmetric core collapse (Basu 1997). All
pre-stellar cores are initially unstable to gravitational collapse,
but differ in the amount of mass and angular momentum. In
particular, model 1 is the most massive, while model 3 is the
least massive. In addition, model 3 is distinguished by a factor
of 2 higher initial ratio of rotational to gravitational energy. The
initial gas and dust temperatures are set equal to 10 K.

The initial chemical composition of the cores in the ThES2 is
as follows. We calculate the time evolution of the central density,
temperature, and chemical composition of the collapsing cloud
core with the one-zone treatment as in Omukai et al. (2005) until
the central density reaches 106 cm−3. The values of the chemical
fractions of the eight species at that time are y(H) = 3 × 10−10,
y(H2) = 0.5, y(H+) = y(e) = 10−8, y(D) = 2 × 10−16, y(HD) =
3 × 10−5, and y(H−) = y(D+) = 0.

We distinguish between different cooling and heating
schemes by adding the corresponding prefix. For example
(ThES1)-model 1 would correspond to model 1 with the ther-
mal evolution scheme 1. In addition, we put the letter “v” after
the model number to denote the models with an increased value
of the viscous α-parameter, thus simulating a fully MRI-active
disk.

The inner boundary condition located at rsc should be cho-
sen with a certain care. If the inner boundary allows for matter
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to flow only in one direction from the active disk to the sink
cell, then any wave-like motions near the inner boundary, such as
those triggered by spiral density waves in the disk, would result
in a disproportionate flow through the sink–disk interface. As a
result, an artificial depression in the gas density near the inner
boundary develops over the course of time because of the lack
of compensating back flow from the sink to the disk. A solution
to this problem was proposed in Vorobyov et al. (2018), where a
free inflow–outflow boundary condition was introduced, allow-
ing matter to flow freely from the disk to the central sink cell and
vice versa according to the computed mass transport rate through
the sink–disk interface. In particular, the mass of material ∆Mflow
(always positive definite) that passes through the sink–disk inter-
face is further split into two components, ∆M∗ and ∆Ms.c., which
are used to update the gas surface density in the sink cell Σs.c. and
the stellar mass M∗ according to the following algorithm:

if Σn
s.c. < Σ

n
in.disk and vr(rs.c.) < 0 then

Σn+1
s.c. = Σn

s.c. + ∆Ms.c./S s.c.

Mn+1
∗ = Mn

∗ + ∆M∗
if Σn

s.c. < Σ
n
in.disk and vr(rs.c.) ≥ 0 then

Σn+1
s.c. = Σn

s.c. − ∆Mflow/S s.c.

Mn+1
∗ = Mn

∗

if Σn
s.c. ≥ Σ

n
in.disk and vr(rs.c.) < 0 then

Σn+1
s.c. = Σn

s.c.

Mn+1
∗ = Mn

∗ + ∆Mflow

if Σn
s.c. ≥ Σ

n
in.disk and vr(rs.c.) ≥ 0 then

Σn+1
s.c. = Σn

s.c. − ∆Mflow/S s.c.

Mn+1
∗ = Mn

∗ .

Here Σin.disk is the averaged surface density of gas in the inner
active disk (the averaging is usually done over one au immedi-
ately adjacent to the sink cell), S s.c. is the surface area of the
sink cell, and vr(rs.c.) is the radial component of velocity at the
sink–disk interface. We note that vr(rs.c.) < 0 when the gas flows
from the active disk to the sink cell and vr(rs.c.) > 0 in the oppo-
site case. The superscripts n and n + 1 denote the current and the
updated (next time step) quantities. The exact partition between
∆M∗ and ∆Ms.c. is usually set to 95%:5%, meaning that most
of the mass lands directly on the star and only a small fraction
is retained by the sink. This corresponds to fast mass transport
through the sink. The effect of the ∆M∗ : ∆Ms.c. partition on the
disk evolution is studied in Vorobyov et al. (2019). The calculated
values of Σn+1

s.c. are used at the next time step as the inner bound-
ary values for the gas surface density. The radial velocity and
internal energy at the inner boundary are determined from the
zero gradient condition, while the azimuthal velocity is extrapo-
lated from the active disk to the sink cell assuming a Keplerian
rotation.

The rate may be both negative, meaning the flow of mass
from the disk to the sink, and positive, meaning the opposite
flow from the sink to the disk. The mass transport rate through
the sink–disk interface is also used to calculate the net mass of
gas in the sink and in the star (for details, see Kadam et al. 2019).

The known gas mass in the sink cell is then used as the inner
boundary values for the surface density in the disk. The radial
velocity and internal energy at the inner boundary are deter-
mined from the zero gradient condition, while the azimuthal
velocity is extrapolated from the active disk to the sink cell

assuming a Keplerian rotation. These inflow–otuflow boundary
conditions enable a smooth transition of the surface density and
angular momentum between the inner active disk and the sink
cell, preventing (or greatly reducing) the formation of an artifi-
cial drop in the surface density near the inner boundary. Finally,
we note that the outer boundary condition is set to a standard
free outflow, allowing material to flow out of the computational
domain, but not allowing any material to flow in.

2.5. Solution procedure

The continuity and momentum Eqs. (1) and (2) and also the
energy Eqs. (3), (7), and (12), depending on the adopted cooling–
heating scheme, are solved on the polar grid (r, φ) using the
operator-split solution procedure similar in methodology to the
ZEUS-2D code (Stone & Norman 1992). The computational
domain extends from the sink cell boundary at rsc = 5 au to
the initial cloud core radius at rout (see Table 1). The star (once
formed) is located at the coordinate origin and the stellar motion
in response to the disk potential is not taken into account in this
study. The adopted resolution is 512 × 512 grid cells, which on
the logarithmically spaced grid corresponds to a spatial resolu-
tion of 0.1 au at a radial distance of 7 au and 1.0 au at 70 au.
To correctly simulate disk fragmentation, the local Jeans length
must be resolved by at least four numerical cells (Truelove et al.
1998). In the thin-disk limit, the Jeans length can be expressed
as (Vorobyov 2013)

RJ =
c2

s

πGΣ
, (36)

where cs is the sound speed and G is the gravitational con-
stant. Fragments usually condense out of the densest sections
of spiral arms at a typical distance of 100 au and then either
migrate inward or scatter outward. The typical surface densities
and temperatures in spiral arms do not exceed 100 g cm−2 and
100 K. Adopting these values, the corresponding Jeans length is
RJ ≈ 20 AU. The numerical resolution at 100 au is 1.4 au, thus
fulfilling the Truelove criterion.

The solution is split into the transport and source steps. In
the transport step, the update of hydrodynamic quantities due to
advection is done using the third-order piecewise parabolic inter-
polation scheme of Colella & Woodard (1984). In the source
step, the update of hydrodynamic quantities due to gravity,
turbulent viscosity, cooling, and heating is performed. The grav-
itational potential of the matter in the computational domain is
found by solving for the Poisson integral (Binney & Tremaine
1987):

Φ(r, φ) (37)

= −G
∫ rout

rsc

r′dr′
∫ 2π

0

Σ(r′, φ′)dφ′√
r′2 + r2 − 2rr′ cos(φ′ − φ)

.

We note that we do not introduce an explicit smoothing length
when calculating the integral (Eq. (37)), as was advocated in
Müeller et al. (2012) because our method for calculating the inte-
gral already includes an implicit smoother set equal to the size
of the grid cell in which the potential is calculated (see Eq. (2-
206) in Binney & Tremaine 1987). Since the size of the cell
and the disk scale height are both linearly proportional to radial
distance in our model, our implicit smoothing length is also lin-
early proportional to the disk scale height, in agreement with
Müeller et al. (2012), but the coefficient of proportionality may
be different.
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We use an explicit integrator to compute the viscous force
and heating (the last terms on the right-hand side of the momen-
tum and internal energy equations). This is found to be adequate
as long as the α-parameter does not greatly exceed 0.01. The
update of the internal energy per surface area in the β-cooling
scheme is done using an analytic solution, while in ThES1 and
ThES2 the update due to cooling and heating is done implicitly
using the Newton–Raphson method of root finding, comple-
mented by the bisection method where the Newton–Raphson
iterations fail to converge. The implicit solution is applied to
avoid time steps that are too small that may emerge in regions
of fast heating or cooling. A small amount of artificial viscosity
is added to smooth out the shocks, which may occur in the gas
flow, but the associated torques are much smaller than those due
to turbulent viscosity.

We solve non-equilibrium kinetic equations for H, H2, H+,
D, HD, D+, and e, while the H− fraction is calculated from the
equilibrium of reactions 3, 4, 11, 12, 15, and 16 in Table B.1.
The method of calculating the rate coefficients of the reverse
reactions using the rate coefficients of the forward reactions
(summarized in Table B.1) is explained in Appendix C in
Matsukoba et al. (2019). We assume that helium is always neutral
and its fractional abundance is yHe = 8.333 × 10−2.

We also assume that our species are collisionally coupled
with gas, which eliminates the need for solving separate equa-
tions of motion for each species. The remaining continuity
equation for the surface density (Σi) of each of the species is
written as

∂Σi

∂t
+ ∇p ·

(
Σiup

)
= k j,kΣ jΣk − kk,iΣkΣi, (38)

where the right-hand terms are the sources and sinks due to
chemical reactions. The set of Eqs. (38) is solved in two steps.
First, Σi are updated by solving implicitly the set of non-
equilibrium kinetic equations taking chemical reactions into
account. This step is performed between the source and transport
steps of the hydrodynamic part. Then the chemical species are
advected with the gas flow using the same third-order-accurate
scheme of Colella & Woodard (1984).

3. Disk evolution in ThES2

We start with describing the disk evolution in the framework of
the most elaborate thermal evolution scheme ThES2 with sepa-
rate gas and dust temperatures. Figure 1 presents the gas surface
density distribution in the inner 2000 × 2000 au2 box for the five
considered models. The most massive model (in terms of the
pre-stellar core) is shown in the top row, while the least massive
model with different α-values (10−2 and 10−4) is shown in the
bottom two rows. The intermediate-mass model is shown in the
second and third rows, also for the two values of α-parameter.

Clearly, the mass of the pre-stellar core determines the
properties of the disk that form as a result of gravitational
collapse. In the most massive (ThES2)-model 1v the disk is
strongly fragmented during the considered evolution period (up
to 0.41 Myr), while in the least massive (ThES2)-model 3v and
(ThES2)-model 3 the disk only shows signatures of fragmenta-
tion in the very early stages (<0.1 Myr) and becomes virtually
axisymmetric in the later evolution. Low turbulent viscosity in
(TheS2)-model2 and (ThES2)-model3 helps gravitational insta-
bility last longer, in agreement with the recent findings of Rice &
Nayakshin (2018). This occurs because viscosity acts to smooth
out local inhomogeneities, and also reduces the net disk mass

Fig. 1. Gas surface density distributions in the five models considered.
Each row presents a specific model, as indicated, and each column cor-
responds to a specific time starting from disk formation. The scale bar
is in log g cm−2.

due to an elevated mass transport. The disks in the low-viscosity
models are also more compact due to the lack of viscous spread-
ing. An increased rate of pre-stellar core rotation, as indicated by
a higher βc-value in (ThES2)-model 3v and (ThES2)-model 3,
does not offset the effect of a decreased initial core mass.
These two models show weaker and less persistent signatures
of gravitational instability and fragmentation. Although higher
βc models can form more extended disks (gravitational insta-
bility and fragmentation are strongest at large distances), the
higher Mcore models form more massive disks and this factor
appears to be decisive for the development and sustainability of
gravitational instability and fragmentation.

Figure 2 presents the spatial distribution of dust temperature
in the inner 2000 × 2000 au2 for the five considered models.
Overall, the higher mass models are warmer than their lower
mass counterparts, which can be explained by a higher stellar
luminosity feedback in the models that form from more mas-
sive cores. The terminal stellar masses in (ThES2)-model 1v
and (ThES2)-model 2v are 0.67 M� and 0.43 M�, respectively.
Stars with such masses have photospheric luminosities of 3.3 L�
and 1.8 L�, according to the adopted stellar evolution tracks
from Yorke & Bodenheimer (2008). The low-mass (ThES2)-
model 3v has the terminal stellar mass of 0.18 M� and its
photospheric luminosity is only 0.3 L�. A similar trend is found
for the accretion luminosities: higher mass models have higher
accretion luminosities thanks to higher accretion rates driven
by more massive (and more gravitationally unstable) disks. Vis-
cous models also have higher disk temperatures, which can be
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Fig. 2. Similar to Fig. 1, but for the dust temperature. The scale bar is
in log K.

explained by additional viscous heating. Finally, we note that the
gaseous clumps formed via disk fragmentation are distinguished
by higher dust temperatures compared to the immediate disk
environment. This temperature increase is caused by compres-
sional heating (PdV work) of gravitationally bound and optically
thick clumps.

One interesting feature that can be noted in Fig. 2 is a slight
temperature increase at the outer edge of the disk. This effect is
most pronounced in Fig. 3, however, which shows the gas tem-
perature distribution in the inner 2000×2000 au2 box for the five
considered models. Clearly, the gas temperature distribution is
strongly non-monotonic: the gas temperature generally declines
with radius, but there is a high-temperature rim in the disk outer
regions where the gas temperature can exceed 100 K. We note
that the gas temperature in the immediate surroundings is just a
few tens of Kelvin.

To better illustrate the origin of the jump in the gas tem-
perature distribution, we plot in Fig. 4 the gas velocity field
superimposed on the gas surface density distribution in (ThES2)-
model 2v at t = 0.16 Myr. The black contour line defines the
disk regions where the gas surface density is equal to 0.1 g cm−2,
a value below which protoplanetary disks usually have a sharp
outer edge (see Fig. 8 in Andrews et al. 2009). Clearly, the
jump in the gas temperature occurs near the disk outer edge,
where the gas surface density is low and where the infalling mat-
ter from the envelope meets the rotating disk. The converging
gas flows produce additional compressional heating to the gas
component, but the low surface densities of gas and dust pre-
vent the gas from quickly attaining thermal equilibrium with the
dust through mutual collisions. As a result, the gas temperature

Fig. 3. Similar to Fig. 1, but for the gas temperature. The scale bar is in
log K.

decouples from that of dust. This means that the gas tempera-
ture jump is expected to be most pronounced in the embedded
stages of disk evolution, which seems to be the case in Fig. 3.
The strength of the gas temperature jump diminishes with time
in the intermediate- and low-mass models 2 and 3, for which the
embedded phase ends at t = 0.19 Myr and t = 0.13 Myr, respec-
tively (the end of the embedded phase is set to the time instance
when less than 5% of the initial pre-stellar core mass still resides
in the infalling envelope). The high-mass model 1 remains in the
embedded phase for the entire duration of our simulations.

The reason for decoupled gas and dust temperatures can be
understood from the following analysis. Assuming that radia-
tive cooling of dust is balanced by collisional heating with gas,
Eq. (17) can be expressed as

Td ' 120 K
(

Tg

100K

)0.3 ( ng

1010 cm−3

)0.2
, (39)

where ng is the number density of gas. By setting Tg = Td we
define the threshold temperature above which gas and dust ther-
mally decouple from each other. This threshold temperature can
be written as

Tcrit ' 130 K
( ng

1010 cm−3

)0.3
. (40)

To illustrate the effect of threshold temperature, we take
(ThES2)-model 2v at t = 0.16 Myr and plot Tcrit as a func-
tion of radial distance in Fig. 5 (thick black line). We used the
azimuthally averaged gas number density when calculating Tcrit.
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Fig. 4. Gas velocity field superimposed on the gas temperature distri-
bution in (ThES2)-model 2v. The black contour outlines a gas surface
density of 0.1 g cm−2.

Fig. 5. Decoupling of gas and dust temperatures in the disk and enve-
lope in (ThES2)-model 2v at t = 0.16 Myr. Shown are the threshold
temperature (Tcrit, black thick line) above and below which the gas
and dust temperatures are thermally decoupled and coupled, respec-
tively. The red thin and thick lines present the minimum and maximum
azimuthal variations of the gas temperature, respectively, while the blue
dashed thin and thick lines show the corresponding quantities for the
dust temperature. The brown circle indicates the position of the disk
outer edge.

The red thin and thick solid lines show the minimum and max-
imum azimuthal variations in the gas temperature, respectively,
while the red thin and thick dashed lines present the correspond-
ing variations for the dust temperature. We note that gas and dust
temperatures coincide inside 200 au where both temperatures
are lower than the threshold value. This is a thermally coupled
region of the disk. The variations in gas and dust temperatures
begin to deviate from each other beyond 200 au. In particular, the

Fig. 6. Comparison of the gas surface density, and gas and dust tem-
peratures in model 2. Top and bottom rows: (ThES2)-model 2v and
(ThES2)-model 2, middle row: results for a test model with the rate of
collisional heat exchange between dust and gas Γcoll increased artificially
by a factor of 50.

gas temperature becomes systematically higher than the thresh-
old temperature Tcrit, meaning that the disk is now in a thermally
decoupled state.

To elaborate further on the cause for the gas tempera-
ture jump, we considered a test model in which we artificially
increased the rate of collisional energy exchange between dust
and gas (Γcoll) by a factor of 50. This exercise mimics an increase
in the density of both material species without affecting the
integrity of the disk. If the temperature jump is due to slow
exchange of energy between compressionally heated gas and
radiatively cooled dust, then the jump should diminish as we
increase Γcoll. Figure 6 demonstrates that this is indeed the case.
The top row presents the gas surface density, and gas and dust
temperatures for the standard (ThES2)-model 2v at t = 0.16 Myr.
The middle row shows the same quantities in a test model with
Γcoll increased artificially by a factor of 50. Clearly, the gas
and dust temperatures in this test case are similar and the gas
temperature jump near the outer disk edge is greatly reduced.
The bottom row presents the resulting distributions for (ThES2)-
model 2 with a reduced rate of viscous heating. As can be seen,
the rate of viscous heating does not affect notably the strength of
the gas temperature jump. We conclude that gas-to-dust energy
exchange defined by Eq. (19) is the most important mechanism
to capture the effect of temperature decoupling. It sets the dust
temperature through Eq. (17), and the resulting dust temperature
enters the dominant Qcont term in Eq. (13). The second in impor-
tance is the Qmetal term, but its effect is notable only near the
disk outer edge. We note that ThES2 can be applied to a wide
range of metallicities, and at lower metallicities the other terms
in Eq. (13) can become important.

What could be the consequences of decoupling between the
gas and dust temperatures? We show in Sect. 4 that this decou-
pling does not have a notable effect on the disk structure and
propensity to gravitational instability and fragmentation. How-
ever, an increase in the gas temperature near the disk outer edge
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Fig. 7. Azimuthally averaged radial distributions of temperatures for gas (red solid line), dust (blue dash-dotted line), and radiation (green dotted
line) in five models considered. The shaded areas indicate the range of azimuthal variations of gas (pink) and dust (blue) temperatures at each
radius. The black line is the difference between the maximum temperatures of gas and dust (right-hand axis). The gray dashed line shows the radius
of the disk outer edge. The arrangement of panels is the same as in Fig. 1.

may have important consequences for the chemical processing
of gas that flows in from the envelope. An increase in the gas
temperature to more than 100 K could launch gas phase reac-
tions that are expected to be dormant in these otherwise cold
disk outer regions. For instance, Oya et al. (2016) inferred a local
increase in the gas kinetic temperature in the disk outer regions
of IRAS 16293-2422 based on the peculiar chemical composi-
tion, and explained this feature by a possible shock heating at
the disk–envelope interface. The observational detection of a gas
temperature jump is however not unambiguous, as more recent
observations of IRAS 16293-2422 revealed no such structures
(van’t Hoff et al. 2020). Our numerical simulations also sug-
gest that these features are not omnipresent and their occurrence
depends on the disk evolution stage.

Decoupling of gas and dust temperatures may also affect the
growth rate of small (sub)micron-sized dust particles that flow in
with gas from the envelope. If volatile species become oversatu-
rated in the warm gas environment near the disk outer edge, this
may facilitate the growth of icy mantles on cold dust particles
(a similar effect can be observed in a Turkish bath when water
vapor condenses on cold objects that are brought to the bath).

We note that the temperature decoupling between gas and
dust may not only be limited to the outer disk regions. Recent

studies have already demonstrated the importance of radiative
disk properties on the formation and position of gaps, spirals,
and snow lines in protoplanetary disks (Zhang & Zhu 2020;
Ziampras et al. 2020). The formation of gaps and rings in the
dust density distribution can also lead to a reduced rate of energy
transfer between gas and dust in the regions of depressed density
(i.e., gaps), possibly resulting in temperature decoupling. This
may have important consequences for the disk mass estimates
which sensitively depend on the assumed disk temperature. We
plan to explore this effect in follow-up studies.

Finally, in Fig. 7 we make a detailed comparison of the
azimuthally averaged radial gas, dust, and irradiation tempera-
ture profiles in all five models considered. In particular, the red
and blue curves present the gas and dust temperatures, while
the green dotted curve is the temperature of stellar and back-
ground irradiation. Let us first consider the black line which
illustrates the maximum deviation of the gas temperature from
that of dust (see the right-hand axis). Clearly, this deviation can
reach hundreds of Kelvin in the massive and intermediate-mass
models 1 and 2, especially in the early stages of disk evolution.
The deviation peaks in the disk outer regions in the vicinity of
the disk outer edge (marked with the vertical dashed lines) and
diminishes in the inner parts of the disk.
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Fig. 8. Comparison of gas surface density distributions in model 2v
with ThES2 (separate dust and gas temperatures) and ThES1 (equal gas
and dust temperatures). The scale bar is in log g cm−2.

We also note that the gas and dust temperatures show consid-
erable azimuthal variations, as illustrated by the shaded areas:
blue for the dust temperature variations and pink for the gas
temperature variations. These variations reflect the underlying
non-axisymmetric distribution of gas in the disk and the circum-
disk environment (see Fig. 1). In the inner disk regions variations
in the two temperatures are similar (which is why only the blue
shaded area is visible). In the outer disk regions, however, the
variation in the gas temperature greatly exceeds that of dust.
Interestingly, the gas temperature in the regions beyond 1000 au
drops systematically below that of dust (which is 10 K, set by
the background irradiation). This is an inverse effect compared
to that found for the disk outer edge where the gas temperature
exceeds that of dust. In the regions beyond 1000 au the only
notable heating mechanism is the background irradiation, which
directly sets the dust temperature. Extremely low gas densi-
ties, however, prevent dust and gas temperatures from equalizing
through mutual collisions, leading to progressive decoupling
between the two temperatures.

4. Comparison of disk evolution in ThES1 and
ThES2

In this section, we compare the disk evolution for two differ-
ent thermal schemes ThES1 and ThES2. Our motivation is to
discover whether the disk evolution with separate dust and gas
temperatures (ThES2) can be notably different from the disk evo-
lution with equal dust and gas temperatures (ThES1). For this
purpose, we have chosen model 2v with the α-value set equal
to 10−2. Figure 8 presents the gas surface density distributions
in the inner 2000 × 2000 au2 box for (ThES2)-model 2v (top
row) and (ThES1)-model v2 (bottom row). Somewhat surpris-
ingly, the overall evolution is similar whether we consider ThES2
or ThES1. The disks in both models are gravitationally unstable
and are prone to fragmentation in the initial stages of evolution.

To make a more quantitative analysis, we estimated the
strength of gravitational instability by calculating the global
Fourier amplitudes defined as

Cm(t) =
1

Md

∣∣∣∣∣∣
∫ 2π

0

∫ Rd

rsc

Σ(r, φ, t) eimφr dr dφ

∣∣∣∣∣∣ , (41)

where Md is the disk mass, Rd is the disk’s outer radius set for
simplicity to 500 au, and m is the ordinal number of the spi-
ral mode. When the disk surface density is axisymmetric, the

Fig. 9. Comparison of the global Fourier amplitudes in model 2v with
ThES1 (red lines) and ThES2 (black lines). The global amplitudes for
four modes (m = 1, 2, 3, and 4) are shown in the four panels. The time is
counted from the beginning of the core collapse.

amplitudes of all modes that are not equal to zero vanish. When,
for example, Cm(t) = 0.1, the perturbation amplitude of spiral
density waves in the disk is 10% that of the underlying axisym-
metric density distribution. The resulting Fourier amplitudes for
(ThES1)-model 2v and (ThES2)-model 2v are shown in Fig. 9.
It appears that (ThES2)-model 2v with distinct dust and gas
temperatures is slightly more gravitationally unstable, but the
difference in the Fourier amplitudes is insignificant.

Furthermore, we calculated the number of fragments in
the disk at a given time instance formed through gravitational
fragmentation using the fragment-tracking algorithm described
in Vorobyov (2013). The results are presented in Fig. 10 for
(ThES2)-model 2v (top panel) and (ThES1)-model 2v. An
increase in the number of fragments shows recent fragmenta-
tion, and a decrease shows either recent tidal destruction or
accretion of the fragments on the star. Again, the model with dis-
tinct dust and gas temperatures appears to form more fragments,
but the model with equal dust and gas temperatures appears
to sustain disk fragmentation for a longer time. To summarize,
there are slight quantitative differences in the disk evolution
for different thermal evolution schemes, but they do not cause
qualitative changes in disk dynamics, such as suppression of
disk fragmentation or disk stabilization against gravitational
instability.

To further explore the difference in the evolution of model 2v
with distinct thermal evolution schemes, we show in Fig. 11 the
gas and dust spatial temperature distributions. More specifically,
the first and second rows present the gas and dust temperature
distributions in (ThES2)-model 2v, respectively, while the third
row presents the temperature distribution (same for gas and dust)
in (ThES1)-model 2v. In addition, in Fig. 12 we compare the
azimuthally averaged gas and dust temperatures in the two con-
sidered models at the same evolutionary times as in Fig. 11. The
solid lines show the gas and dust temperatures for different ther-
mal schemes, while the dashed lines show the temperature of
stellar and background irradiation.

In the very early disk evolution, the gas and dust temper-
atures in (TheS1)-model 2v are systematically higher than in
(ThES2)-model v2, but this difference vanishes in the later
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Fig. 10. Comparison of the number of fragments in the disk in model 2v
with ThES2 (top panel) and ThES1 (bottom panel). The time is counted
from the instance of disk formation.

Fig. 11. Comparison of gas and dust temperature distributions in
model v2 with ThES1 and ThES2. First and second rows: gas and dust
temperature distributions in ThES2. Third row: temperature distribution
(the same for gas and dust) in ThES1. Bottom row: comparison of the
azimuthally averaged temperatures in the two considered thermal evo-
lution schemes. The solid lines show the temperatures of gas and dust,
while the dashed lines provide the temperatures of stellar irradiation.
The scale bar is in log Kelvin.

evolution. The azimuthally averaged gas and dust temperature
profiles become almost indistinguishable, except for a well-
defined jump in the gas temperature in the outer disk regions of
(ThES2)-model 2v (separate gas and dust temperatures). There is
also a notable positive deviation of the gas and dust temperatures
from that of stellar irradiation in the inner disk regions, which
occurs due to additional viscous heating of the disk. The gas and
dust temperatures are similar in the bulk of the disk because the
collisional exchange of energy between gas and dust is efficient
in equalizing the corresponding temperatures. Only in the outer
disk regions is this trend broken, thanks to decreased gas and

Fig. 12. Comparison of the azimuthally averaged gas and dust temper-
ature distributions in model v2 with ThES1 and ThES2. The solid lines
show the temperatures of gas and dust, while the dashed lines provide
the temperatures of stellar irradiation. The gas and dust temperatures in
the (ThES2)-model v2 coincide everywhere except for the outer regions.

dust densities and increased rates of compressional heating near
the disk outer edge where the inflowing envelope lands at the
disk (see Figs. 4 and 5). As the compressed gas moves closer
to the star, it quickly cools through increased collisions with
dust and dust radiative cooling. The spatially limited extent of
the disk regions where gas and dust temperatures decouple from
each other may explain why the disk evolution weakly depends
on the considered thermal evolution schemes.

5. Comparison with the β-cooling scheme

In this section, we compare the disk evolution in model 2v using
two thermal evolution schemes that are opposite in complexity:
the most sophisticated ThES2 and the most simplified β-cooling.
Our purpose is to determine whether β-cooling can be used as
a valid substitute for the more sophisticated thermal evolution
schemes. We considered several values of the β-parameter and
distinguish between the β-models by adding a prefix beta to the
model. For instance, (beta=3)-model 2v would correspond to
model 2v with the β-cooling scheme and β-value equal to 3.0. In
addition, we distinguish between the β-models with stellar and
external irradiation by adding the suffix “Ir” to the β-value as
in (beta=3Ir)-model 2v. We start by considering the case with-
out irradiation and continue with the β-models taking irradiation
into account.

5.1. The case without irradiation

Figure 13 presents the gas surface density distributions in the
inner 2000 × 2000 au2 region for (ThES2)-model 2v (top row)
and three models 2v with different β-values: (beta=3)-model 2v
(second row), (beta=10)-model 2v (third row), and (beta=30)-
model 2v (bottom row). Clearly, the disk evolution in model 2v
with ThES2 is notably different from that obtained with the β-
cooling scheme. The β = 3 model carries some resemblance to
the model with ThES2, but it is clearly more prone to gravi-
tational fragmentation. The other two models with β = 10 and
β = 30 are conspicuously different from the model with ThES2.
The disk in these β-cooling models is much more extended
initially and has a flocculent structure which is not typical of
circumstellar disks.
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Fig. 13. Comparison of gas surface density distributions in model v2
with ThES2 and β-cooling. First row: (ThES2)-model 2v, second row:
(beta=3)-model 2v, third row: (beta=10)-model 2v, and bottom row:
(beta=30)-model 2v. The time is counted from the instance of disk
formation. The scale bar is in log g cm−2.

The high-density circumstellar structure in models with
β-cooling is not a true centrifugally balanced disk with a near-
Keplerian rotation, but rather a pseudo-disk with a significant
deviation from circular motion. Figure 14 presents the gas veloc-
ity fields superimposed on the gas surface density distributions in
(ThES2)-model 2v (top row), (beta=3)-model 2v (middle row),
and (beta=10)-model 2v (bottom row) in the early stages of evo-
lution. The red circles outline the disk regions within which the
relative deviation of the azimuthally averaged angular velocity
vφ from the Keplerian rotation is less than 10% (in most of this
inner region it does not exceed 1–2%). When calculating the
Keplerian velocity we also took into account the contribution
from the enclosed gaseous and dusty material. The green con-
tour lines outline the radial extent beyond which the gas surface
density drops below 0.1 g cm−2.

In the case of ThES2, the radial extent within which the
gas surface density is greater than 0.1 g cm−2 agrees quite
closely with the regions within which the deviation from the
Keplerian rotation is smaller than 10%. Some mismatch is seen
at t = 0.16 kyr to the south, but this is caused by a pronounced
lopsidedness of the disk at this time instance. This means that
Σ = 0.1 g cm−2 may be regarded as the disk outer edge, as was
already noted for protoplanetary disks in Ophiuchus by Andrews
et al. (2009). When we turn to the β-cooling models, however,
the mismatch between the dense regions with Σ > 0.1 g cm−2

and regions with nearly Keplerian rotation becomes much more
pronounced. This means that the dense structure outlined by the
green contour lines is in fact a pseudo-disk with a significant
deviation (tens of percent) from the Keplerian motion.

Figure 15 presents a comparison of the number of fragments
in the disk of (ThES2)-model 2v (top panel), (beta=3)-model 2v
(middle panel), and (beta=10)-model 2v (bottom panel). The
disk in the β = 30 model did not fragment. Clearly, the β = 3

Fig. 14. Gas velocity field superimposed on the gas surface density dis-
tribitions in (ThES2)-model 2v (top row), (beta=3)-model 2v (middle
row), and (beta=10)-model 2v (bottom row) at two evolutionary times,
as indicated in each panel. The red circles outline the radial distance
beyond which the azimuthally averaged angular velocity deviates from
the Keplerian rotation by more than 10%. The green contours outline
the regions where the gas surface density drops to 0.1 g cm−1. The
time is counted from the instance of disk formation. The scale bar is in
log g cm−2.

model produces too many fragments and the β = 10 model too
few fragments compared to the ThES2 model. The number of
fragments decreases in the β-models with increasing β-value, as
was also found in other studies of disk fragmentation using the
β-cooling scheme (e.g., Meru & Bate 2011). The general trend
of decreasing strength of gravitational instability with increas-
ing β-value is expected: slower cooling leads to warmer disks
and reduced gravitational instability. Overall, neither of the con-
sidered simplified β-cooling models can reproduce the strength
of gravitational instability and fragmentation found in models
with a more sophisticated thermal evolution scheme.

Finally, in the first and second rows of Fig. 16 we present the
spatial distribution of gas temperatures in (ThES2)-model 2v and
(ThES1)-model 2v, respectively. The other three rows show the
gas temperatures in the β-cooling models. Each column corre-
sponds to a specific age of the disk. The gas temperatures in the
β-models are strikingly different from those of gas and dust in the
ThES2 model. The inner disk regions in the former models are
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Fig. 15. Comparison of the number of fragments at a given time
instance in the disks of (ThES2)-model 2v (top panel), (beta=3)-
model 2v (middle panel), and (beta=10)-model 2v (bottom panel). The
time is counted from the instance of disk formation.

often colder than the periphery, which is a direct consequence of
decreasing cooling time with decreasing radial distance for a spa-
tially constant β-parameter. This trend is corroborated in Fig. 17,
which shows the azimuthally averaged gas temperature profiles
for the same models and at the same evolutionary times as in
Fig. 16. The mismatch between the β-models and more sophis-
ticated thermal evolution schemes is significant. We note that
we had to impose an absolute lower limit on the gas tempera-
ture (4 K) in the β-models to avoid overcooling in the inner disk
regions.

It may appear that we can achieve a better agreement with
the ThES2 model by choosing the right β-value. This is unlikely
because the characteristic cooling time tc can be highly variable
both in time and space, meaning that β is also variable. We esti-
mated the cooling time in (ThES1)-model 2 as tc = e/Λ and
confirmed that β = tcΩ varies by more than an order of mag-
nitude both radially and azimuthally within the disk extent, as
Fig. 18 demonstrates.

5.2. The case with irradiation

In this section, we present the results for the β-models that take
stellar and background irradiation into account. Compared to the
previous section, we dropped the model with β = 30, because
the models with increasingly higher β-values demonstrated pro-
gressively worse agreement with the ThES2 thermal scheme.
Instead, we considered lower values of β, which showed better
agreement.

Figure 19 shows the gas surface density distributions in the
inner 2000 × 2000 au2 box for (ThES2)-model 2v (top row)
and three β-models with the β-values set equal to 0.5, 3, and

Fig. 16. Comparison of gas temperature distributions in models with
different thermal evolution schemes. First and second rows: gas temper-
atures in (ThES2)-model 2v and (ThES1)-model 2v, respectively. Third,
fourth, and last rows: gas temperatures in (beta=3)-model 2v, (beta=10)-
model 2v, and (beta=30)-model 2v, respectively. In the β-models the
gas and dust temperatures are the same. The time is counted from the
instance of disk formation. The scale bar is in log Kelvin.

Fig. 17. Comparison of the azimuthally averaged gas temperatures in
models with different thermal evolution schemes. The red and black
solid lines present the gas temperature profiles for ThES2 and ThES1
in model 2v, respectively. The blue solid, dashed, and dotted lines show
the profiles for model 2v with β = 3, β = 10, and β = 30, respectively.

10. The β-models have the same initial parameters of pre-stellar
cores and the same value of the viscous α-parameter (10−2) as
in (ThES2)-model 2v. A comparison of Figs. 13 and 19 shows
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Fig. 18. Values of the β-parameter calculated in (ThES1)-model 2 at
2.8 kyr after the disk formation instance. Each red dot corresponds to
a β-value in an individual grid cell. Significant azimuthal and radial
variations are evident.

Fig. 19. Comparison of gas surface density distributions in model v2
with ThES2 and in β-models that take stellar and background irradiation
into account. First row: (ThES2)-model 2v, second row: (beta=0.5Ir)-
model 2v, third row: (beta=3Ir)-model 2v, and bottom row: (beta=10Ir)-
model 2v. The red circles outline the radial distance beyond which the
azimuthally averaged angular velocity deviates from the Keplerian rota-
tion by more than 10%. The time is counted from the instance of disk
formation. The scale bar is in log g cm−2.

that the β-models with irradiation can better reproduce the disk
evolution obtained in the ThES2 thermal scheme. In particu-
lar, models with β = 3 and especially with β = 0.5 possess the
disk structure that is similar to what was obtained in (ThES2)-
model 2v. As the red circles demonstrate, the near-Keplerian
rotation is established in the β = 0.5 model throughout most
of the disk extent and at all considered evolutionary times, as
in (ThES2)-model 2v. Nevertheless, some differences can still

Fig. 20. Comparison of the number of fragments at a given time
instance in the disks of (ThES2)-model 2v (top panel), (beta=0.5Ir)-
model 2v (middle panel), and (beta=1.0Ir)-model 2v (bottom panel).
The time is counted from the instance of disk formation.

be found, for example, a more compact disk in the β-models at
later evolutionary stages and a more diffused disk in the β = 3.0
model in the early evolution. The β = 10 model (and higher-β
models) cannot reproduce the disk structure obtained with the
most sophisticated thermal evolution scheme, whether or not we
take irradiation into account.

To corroborate our conclusions, we show in Fig. 20 the
number of fragments formed via gravitational fragmentation in
the disk of (ThES2)-model 2v and in the disk of β = 0.5 and
β = 1.0 models with stellar and background irradiation. We note
that models with higher values of β did not show disk frag-
mentation, including the β = 3.0 model considered previously.
Regarding the number of fragments, the β = 0.5 model can best
reproduce disk fragmentation in (ThES2)-model 2v. The β = 1.0
model forms too few fragments compared to (ThES2)-model 2v.
Nevertheless, in both β-models disk fragmentation starts earlier
and ends later than in the model with the most sophisticated
thermal evolution scheme.

Finally, Fig. 21 presents the azimuthally averaged radial
profiles of gas temperature in (ThES2)-model 2v and in three
β-models with irradiation. Clearly, the β = 0.5 model can best
reproduce the radial temperature profile in the most sophisti-
cated thermal scheme. Nevertheless, the inner disk regions are
colder in this β-model compared to (TheS2)-model 2v. Strong
β-cooling in the inner fast-rotating disk regions completely over-
whelms disk viscous heating in the lowest-βmodel. Interestingly,
all β-models show a local increase in the gas temperature in the
outer disk regions and in the inner envelope, a feature that is also
present in the ThES2 scheme, but is absent in the ThES1 scheme
(see Fig. 17). This may be related to strong compressional heat-
ing due to PdV work of infalling envelope material and reduced
β-cooling in the outer regions with slow rotation. The amplitude
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Fig. 21. Comparison of the azimuthally averaged gas temperatures in
(TheS2)-model 2v (red lines) and in β-models with irradiation. The blue
solid, dashed, and dotted lines show the profiles for model 2v with β =
0.5, β = 3, and β = 10, respectively.

of the temperature jump in the β-models is a factor of several
higher than in (ThES2)-model 2v.

We conclude that β-models with irradiation can more closely
reproduce the thermal state obtained in the ThES2 scheme than
the β-models without irradiation, but the agreement is still not
acceptable. We note that the required computational resources
for the ThES2 scheme are significantly higher than those for the
ThES1 and β-schemes. Therefore, the former scheme is advis-
able for simulations where gas and dust temperature decoupling
is expected to be of particular importance. In other situations, the
ThES1 scheme may be a method of choice due to its relatively
easy coding and the moderate computational resources required.

6. Summary and discussion

Here we explored numerically the global long-term evolution of
protostellar disks with different cooling and heating schemes.
For this purpose, we used three approaches to describe the ther-
mal balance in the disk: a simplistic β-cooling scheme with and
without stellar and background irradiation considered, a more
realistic scheme with similar gas and dust temperatures (ThES1),
and a sophisticated scheme with separate gas and dust tem-
peratures (ThES2). The last scheme can also be applied to
low-metallicity protostellar disks.

The adopted thermal schemes were tested on global disk
models computed in the thin-disk limit without and with turbu-
lent viscosity using the Shakura & Sunyaev α-parameterization.
The main results can be summarized as follows:

– In the ThES2 scheme, the gas and dust temperatures
are similar in the inner high-density regions of the disk, but
may significantly deviate from each other in the vicinity of the
disk outer edge. In this low-density region a pronounced decou-
pling between the dust and gas temperatures develops thanks
to additional compressional heating of the gas caused by the
infalling envelope material and because of slow collisional
energy exchange between gas and dust in the low-density envi-
ronment. The gas temperature may exceed that of dust by tens or
even hundreds of Kelvin.

– In the outer circumdisk environment occupied by a rarefied
envelope the gas temperature also decouples from that of dust,

but in the opposite direction: the gas temperature drops below
that of dust. This effect was also reported in Pavlyuchenkov et al.
(2015) and Bate (2018).

– The global disk evolution is weakly sensitive to decoupling
of gas and dust temperatures. Gravitational instability in the case
of separate gas and dust temperatures (ThES2) is only slightly
stronger than in the case of similar gas and dust temperatures
(ThES1), as indicated by higher Fourier amplitudes, and gravita-
tional fragmentation is slightly more frequent. Overall, separate
gas and dust temperatures do not cause qualitative changes to
the disk evolution, which appears to be more sensitive to the
presence or absence of turbulent viscosity in the disk.

– Decoupling of gas and dust temperatures may nevertheless
be of significance for the chemical evolution and dust growth. An
increase in the gas temperature to more than 100 Kelvin could
launch gas phase reactions in the disk outer regions that oth-
erwise may be dormant. Moreover, decoupling of gas and dust
temperatures may also facilitate the growth of icy mantles on
cold dust particles if volatile species become oversaturated in
the warm gas environment in the vicinity of the disk outer edge.
The decoupled gas and dust temperatures may also affect the disk
mass estimates.

– Simplistic constant-β models without irradiation fail to
reproduce the disk evolution in more sophisticated thermal mod-
els with or without separate gas and dust temperatures. We
attribute this to the intrinsic variability of the β-parameter both
in time and space. β-cooling models with stellar and background
irradiation taken into account can better match the dynamical
and thermal evolution obtained in the ThES2 thermal scheme,
particularly for β ≈ 0.5−1.0, but the agreement is still incom-
plete.

In the future, it will be interesting to consider cases when the
gas and dust temperatures decouple through the bulk of the disk,
and not only in the disk outermost regions and in the envelope.
This may occur either at metallicities lower than solar or when
the dust-to-gas ratio drops below the canonical 1:100 value in
otherwise solar metallicity disks.
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Appendix A: Line-averaged escape probability
of HD

Table A.1. Fitting coefficients for α.

Temperature [K] a0 a1 a2 a3 a4 a5

Tg < 1000 1.0234 −9.0445× 10−4 3.2614× 10−6 −5.7367× 10−9 4.9825× 10−12 −1.6808× 10−15

Tg > 1000 8.9433× 10−1 6.2158× 10−5 −1.4744× 10−9 −9.0761× 10−12 3.3103× 10−15 −3.7980× 10−19

Table A.2. Fitting coefficients for Nc.

b0 b1 b2 b3 b4 b5

18.892 −1.4802 8.5905× 10−1 4.3840× 10−1 −3.0569× 10−1 4.6412× 10−2

The HD line cooling rate is reduced by the effect of self-
absorption when the column density of HD in the disk is large.
The photon escape probability for self-absorption in individual
transitions is given by

βHD,ul =
1 − e−τul

τul
, (A.1)

where τul is the optical depth for line emission given by the
same formula of Eq. (30). The photon escape probability is a
function of the column density of HD and the gas temperature
because the optical depth for line emission depends on these val-
ues, as you can see from Eqs. (30) and (32). We treat four levels
in the range of rotational levels 0 < J < 3. The level energies
and the spontaneous radiative decay rates are from Dalgarno &
Wright (1972) and Abgrall et al. (1982), respectively. We only
consider the helium impact as the collisional deexcitation pro-
cess and its rate coefficients are taken from Galli & Palla (1998).
The cooling rate of HD line emission is calculated by counting
level populations from the statistical balance among four levels.
We calculate the cooling rate in the range of the column density
of HD 1015 cm−2 < NHD < 1025 cm−2 and the gas temperature
30 K < Tg < 3000 K. We fit the line-averaged escape probability
obtained from the results in a functional form as

βesc,HD =
1

(1 + NHD/Nc)α
, (A.2)

where

α = a0 + a1Tg + a2T 2
g + a3T 3

g + a4T 4
g + a5T 5

g , (A.3)

and

log Nc = b0 + b1log Tg + b2

(
log Tg

)2
+ b3

(
log Tg

)3

+ b4

(
log Tg

)4
+ b5

(
log Tg

)5
. (A.4)

The fitting coefficients in Eqs. (A.3) and (A.4) are given in
Tables A.1 and A.2.

Appendix B: Chemical reactions

In our new cooling–heating scheme described in Sect. 2.3, we
follow the non-equilibrium chemical evolution. Our chemical
network is composed of 21 hydrogen reactions and 6 deuterium
reactions. We describe the treated chemical reactions and their
rate coefficients in Table B.1. In reactions from 1 to 20, only
the rate coefficients of forward reaction are shown. The calcula-
tion method of the rate coefficients of reverse reactions is from
Matsukoba et al. (2019).

A102, page 18 of 19



E. I. Vorobyov et al.: Thermal evolution of protoplanetary disks

Table B.1. Chemical reactions.

Number Reaction Rate coefficient [cm3 s−1] Reference

1, 2 H + e
 H+ + 2e k1 = exp[−3.271396786 × 101 Janev et al. (1987)

+ 1.35365560 × 101 ln Te − 5.73932875 × 100 (ln Te)2

+ 1.56315498 × 100 (ln Te)3 − 2.87705600 × 10−1 (ln Te)4

+ 3.48255977 × 10−2 (ln Te)5 − 2.63197617 × 10−3 (ln Te)6

+ 1.11954395 × 10−4 (ln Te)7 − 2.03914985 × 10−6 (ln Te)8]

3, 4 H− + H
 H2 + e k3 = 1.3500 × 10−9(T 9.8493×10−2

g + 3.2852 × 10−1T 5.5610×10−1

g Kreckel et al. (2010)

+ 2.7710 × 10−7T 2.1826
g )/(1.0 + 6.1910 × 10−3T 1.0461

g

+ 8.9712 × 10−11T 3.0424
g + 3.2576 × 10−14T 3.7741

g )

5, 6 H2 + e
 2H + e k5 = k1−a
5,H ka

5,L

k5,H = 1.91 × 10−9T 0.136
g exp

(
−53407.1/Tg

)
Trevisan & Tennyson (2002)

k5,L = 4.49 × 10−9T 0.11
g exp

(
−101858/Tg

)
a = (1 + nH/ncrit)−1

ncrit =
[
y(H)/ncrit(H) + 2y(H2)/ncrit(H2) + y(He)/ncrit(He)

]−1

log (ncrit(H)) = 3 − 0.416 log (Tg/104) − 0.372
[
log (Tg/104)

]2

log (ncrit(H2)) = 4.845 − 1.3 log (Tg/104) + 1.62
[
log (Tg/104)

]2

log (ncrit(He)) = 5.0792
[
1 − 1.23 × 10−5(Tg − 2000)

]
7, 8 3H
 H2 + H k7 = 7.7 × 10−31T−0.464

g Glover (2008)

9, 10 2H + H2 
 2H2 k9 = k7/8 Palla et al. (1983)

11, 12 H− + H+ 
 2H k11 = 2.4 × 10−6T−0.5
g

(
1.0 + Tg/20000

)
Croft et al. (1999)

13, 14 H+ + e
 H + γ k13 = 2.753 × 10−14
(
315614/Tg

)1.5[
1.0 +

(
115188/Tg

)0.407]−2.242
Ferland et al. (1992)

15, 16 H + e
 H− + γ k15 = dex[−17.845 + 0.762log Tg + 0.1523(log Tg)2 Wishart (1979)

−0.03274(log Tg)3] (Tg < 6000 K)

= dex[−16.4199 + 0.1998(log Tg)2 − 5.447 × 10−3(log Tg)4

+ 415 × 10−5(log Tg)6] (Tg > 6000 K)

17, 18 H2 + He
 2H + He k17 = k1−a
17,Hka

17,L

k17,H = dex[−1.75 logTg − 2.729 − 23474/Tg] Dove et al. (1987)

k17,L = dex[3.801 logTg − 27.029 − 29487/Tg]

19, 20 2H
 H+ + e + H k19 = 1.2U × 10−17T 1.2
g exp

(
− 157800

Tg

)
Lenzuni et al. (1991)

21 2H + grain→ H2 k21 = 6.0 × 10−17
(
Tg/300 K

)1/2
fa Tielens & Hollenbach (1985)

×

[
1 + 4.0 × 10−2

(
Tg + Td

)1/2
+ 2.0 × 10−3Tg + 8.0 × 10−6T 2

g

]−1
× Z/Zlocal

fa =
{
1 + exp

[
7.5 × 102 (1/75 − 1/Td)

]}−1

22 D + H+ → D+ + H k22 = 2.0 × 10−10T 0.402
g exp

(
−37.1/Tg

)
− 3.31 × 10−17T 1.48

g

(
Tg < 2 × 105 K

)
Savin (2002)

= 3.44 × 10−10T 0.35
g

(
Tg > 2 × 105 K

)
23 D+ + H→ D + H+ k23 = 2.06 × 10−10T 0.396

g exp
(
−33/Tg

)
+ 2.03 × 10−9T−0.332

g Savin (2002)

24 D + H2 → HD + H k24 = dex
[
−56.4737 + 5.88886logTg + 7.19692

(
logTg

)2
+ 2.25069

(
logTg

)3
Glover & Abel (2008)

−2.16903
(
logTg

)4
+ 0.317887

(
logTg

)5
] (

Tg < 2000 K
)

= 3.17 × 10−10exp
(
−5207/Tg

) (
Tg > 2000 K

)
25 D+ + H2 → HD + H+ k25 =

[
0.417 + 0.846logTg − 0.137

(
logTg

)2
]
× 10−9 Gerlich (1982)

26 HD + H→ H2 + D k26 = 5.25 × 10−11exp
(
−4430/Tg

) (
Tg < 200 K

)
Shavitt (1959)

= 5.25 × 10−11exp
(
−4430/Tg + 173900/T 2

g

) (
Tg > 200 K

)
27 HD + H+ → D+ + HD k27 = 1.1 × 10−9exp

(
−488/Tg

)
Gerlich (1982)

Notes. The temperature Te is in eV.
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