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ABSTRACT

Aims. The long-term evolution of a circumstellar disk starting from its formation and ending in the T Tauri phase was simulated
numerically with the purpose of studying the evolution of dust in the disk with distinct values of the viscous α-parameter and dust
fragmentation velocity vfrag.
Methods. We solved numerical hydrodynamics equations in the thin-disk limit, which were modified to include a dust component
consisting of two parts: sub-micron-sized dust, and grown dust with a maximum radius ar. The former is strictly coupled to the gas,
while the latter interacts with the gas through friction. Dust growth, dust self-gravity, and the conversion of small to grown dust were
also considered.
Results. We found that the process of dust growth that is known for the older protoplanetary phase also holds for the embedded phase
of the disk evolution. The dust growth efficiency depends on the radial distance from the star – ar is largest in the inner disk and
gradually declines with radial distance. In the inner disk, ar is limited by the dust fragmentation barrier. The process of small-to-grown
dust conversion is very fast once the disk is formed. The total mass of the grown dust in the disk (beyond 1 AU) reaches tens or even
hundreds of Earth masses as soon as in the embedded phase of star formation, and an even greater amount of grown dust drifts in the
inner, unresolved 1 AU of the disk. Dust does not usually grow to radii greater than a few cm. A notable exception are models with
α ≤ 10−3, in which case a zone with reduced mass transport develops in the inner disk and dust can grow to meter-sized boulders in
the inner 10 AU. Grown dust drifts inward and accumulates in the inner disk regions. This effect is most pronounced in the α ≤ 10−3

models, where several hundreds of Earth masses can be accumulated in a narrow region of several AU from the star by the end of
embedded phase. The efficiency of grown dust accumulation in spiral arms is stronger near corotation where the azimuthal velocity of
dust grains is closest to the local velocity of the spiral pattern. In the framework of the adopted dust growth model, the efficiency of
small-to-grown dust conversion was found to increase for lower values of α and vfrag.
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1. Introduction

Circumstellar disks hold the key to our understanding of the star
and planet formation process. They serve as a construction site
for planets and as a bridge between collapsing pre-stellar cores
and nascent stars. In the early evolution phase, properties of cir-
cumstellar disks are controlled by a complex interplay between
mass-loading from the parental core, energy input from the host
star, and mass and angular momentum transport through the
disk. If the mass infall rate from the core onto the disk exceeds
the total mass loss rate of the disk (through protostellar accre-
tion, jets, disk winds, etc.), the disk grows in mass and size and
disk gravitational instability (GI) sets in, leading in some cases
to disk fragmentation.

Gravitational instability and disk fragmentation have mani-
fold implications for the evolution of circumstellar disks. Disk
fragmentation may account for the formation of giant planets
and brown dwarfs, either as companions to host stars or freely
floating objects (Boss 2001; Mayer et al. 2002; Boley 2009;
Nayakshin 2010, 2017; Vorobyov 2013; Stamatellos 2015). Disk

sub-structures formed through GI may serve as likely locations
for dust accumulation and growth (Rice et al. 2004; Nayakshin
2010; Gibbons et al. 2015) and notably influence the chemical
evolution of young disks (Ilee et al. 2011). Dense gaseous clumps
forming in massive GI-unstable disks often migrate into the
star, causing strong accretion and luminosity bursts (Vorobyov
& Basu 2006, 2015; Meyer et al. 2017), which in turn may have
important consequences for protostellar disks and collapsing
parental clouds, affecting their gravitational stability, chemical
composition, and dust growth (Stamatellos et al. 2012; Vorobyov
et al. 2013; Jørgensen et al. 2015; Frimann et al. 2017; Hubbard
2017).

While GI and fragmentation play an important role in the
early disk evolution, especially in the embedded phase, other
important phenomena, such as the magneto-rotational instability
(MRI), can also have a considerable effect on the disk evolu-
tion on short and long timescales. The MRI-induced turbulence
can transport mass and angular momentum in the disk regions
where ionization is sufficiently high (e.g., Turner et al. 2014),
and induce strong accretion and luminosity bursts in the inner
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disk (e.g., Zhu et al. 2009; Ohtani et al. 2014). However, comput-
ing disk evolution with self-consistently induced and sustained
MRI turbulence is a challenging task requiring non-ideal magne-
tohydrodynamics simulations coupled with the stellar radiation
input, dust evolution effects, and ionization balance calculations
(Akimkin 2015; Ivlev et al. 2016). Such models enable disk sim-
ulations only for a limited evolution period and for a narrow set
of circumstellar disk parameters (e.g., Flock et al. 2012; Simon
et al. 2015). Therefore, numerical simulations adopting the α-
prescription of Shakura & Sunyaev (1973) to mimic the effect
of turbulent viscosity have been routinely employed to study
the long-term evolution of circumstellar disks (e.g., Vorobyov
& Basu 2009; Vorobyov 2010; Visser & Dullemond 2010; Rice
et al. 2010; Kimura et al. 2016). These simulations have shown
the importance of disk self-gravity and viscosity for the evolu-
tion and global properties (disk masses, radii) of circumstellar
disks.

In this paper, we continue our efforts to study the long-
term evolution of self-gravitating and viscous circumstellar disks
started in Vorobyov & Basu (2009). We now employ a numerical
hydrodynamics code that in addition to the gaseous component
also includes the dust component. The evolution of the dust
component includes the conversion of small grains into larger
grains as a result of coagulation (using the monodisperse growth
approach as in Stepinski & Valageas 1997) and drift of the grown
dust relative to the gas. Similar modeling of the mutual gas
and dust evolution was recently presented in Gonzalez et al.
(2017). Our study extends these theoretical efforts by account-
ing for the self-consistent formation of a circumstellar disk from
a parental cloud and by considering the accompanying effect
of disk gravitational instability. In this study, we consider the
case of a constant α-parameter. Unlike many previous studies of
self-gravitating disks with a dust component (Rice et al. 2004;
Cha & Nayakshin 2011; Gibbons et al. 2012; Booth & Clarke
2016), we follow the disk evolution starting from its formation
from a collapsing pre-stellar core and ending in the early T Tauri
phase when essentially all of the collapsing core has dissipated.
We specifically study the resulting properties of the gaseous
and dusty components of the circumstellar disk, including the
efficiency of dust growth, inward drift, and accumulation. Our
present development is immediately relevant, since the previ-
ous observational studies of a sample of Class 0 young stellar
objects have suggested that grain growth begins to significantly
change the values of the dust opacity spectral index (β) on
102 AU scales at the ∼1–10 mm wavelength range from late
Class 0 to early Class II stages (Li et al. 2017). In the later stages
of disk evolution, observations indicate dust-to-gas ratios that
are higher than the interstellar medium (ISM) value of 0.01, also
signifying strong evolution in the disk dust composition (e.g.,
Williams & Best 2014; Ansdell et al. 2016).

The paper is organized as follows. In Sect. 2 we present the
detailed description of our numerical model. The main results
are presented in Sect. 3. The parameter space study is conducted
in Sect. 4. The model caveats and future improvements are dis-
cussed in Sect. 5. The main results are summarized in Sect. 6.
Several essential test problems addressing the performance of
our numerical scheme on the dust component are shown in
Appendix B.

2. Protostellar disk model

The numerical model for the formation and evolution of a star
and its circumstellar disk (FEoSaD) is described in detail in

Vorobyov & Basu (2015) and Dong et al. (2016). Here, we briefly
review its main constituent parts and describe new additions and
updates introduced to model the coevolution of a dusty disk.
Numerical simulations start from a collapsing pre-stellar core of
a certain mass, angular momentum, temperature, and dust-to-gas
ratio. The properties of the nascent star are calculated using the
stellar evolution tracks derived using the STELLAR evolution
code (Yorke & Bodenheimer 2008; Vorobyov et al. 2017), while
the formation and long-term evolution of the gaseous and dusty
disk components are described using numerical hydrodynam-
ics simulations in the two-dimensional (r, φ) thin-disk limit. The
evolution of the star and disk are interconnected: the star grows
according to the mass accretion rate provided by hydrodynamic
simulations and heats the disk according to its photospheric and
accretion luminosities.

2.1. Gaseous component

The main physical processes taken into account when model-
ing the disk formation and evolution include viscous and shock
heating, irradiation by the forming star, background irradiation
with a uniform temperature of Tbg = 20 K set equal to the ini-
tial temperature of the natal cloud core, radiative cooling from
the disk surface, friction between the gas and dust components,
and self-gravity of gaseous and dusty disks. The code is writ-
ten in the thin-disk limit, complemented by a calculation of the
gas vertical scale height using an assumption of local hydrostatic
equilibrium as described in Vorobyov & Basu (2009). The result-
ing model has a flared structure (because the disk vertical scale
height increases with radius), which guarantees that both the disk
and envelope receive a fraction of the irradiation energy from the
central protostar. The pertinent equations of mass, momentum,
and energy transport for the gas component are

∂Σg

∂t
+ ∇p ·

(
Σgup

)
= 0, (1)

∂

∂t

(
Σgup

)
+ [∇ ·

(
Σgup ⊗ up

)
]p = −∇pP + Σg gp + (∇ ·Π)p, (2)

∂e
∂t

+ ∇p ·
(
eup

)
= −P(∇p · up) − Λ + Γ + (∇u)pp′ : Πpp′ , (3)

where subscripts p and p′ refer to the planar components (r, φ)
in polar coordinates, Σg is the gas mass surface density, e is the
internal energy per surface area,P is the vertically integrated gas
pressure calculated via the ideal equation of state as P = (γ− 1)e
with γ = 7/5, up = vr r̂ + vφφ̂ is the gas velocity in the disk
plane, and is ∇p = r̂∂/∂r + φ̂r−1∂/∂φ the gradient along the pla-
nar coordinates of the disk. The gravitational acceleration in the
disk plane, gp = gr r̂ + gφφ̂, takes into account self-gravity of
the gaseous and dusty disk components found by solving for the
Poisson integral (see details in Vorobyov & Basu 2010) and the
gravity of the central protostar when formed. Turbulent viscosity
is taken into account via the viscous stress tensor Π, the expres-
sion for which can be found in Vorobyov & Basu (2010). We
parameterized the magnitude of kinematic viscosity ν = αcsHg
using the alpha prescription of Shakura & Sunyaev (1973) with
a constant α-parameter, where cs is the sound speed of gas and
Hg is the gas vertical scale height.

The cooling and heating rates Λ and Γ take the disk black-
body cooling and heating due to stellar and background irradia-
tion into account based on the analytical solution of the radiation
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transfer equations in the vertical direction (see Dong et al. 2016,
for detail):

Λ =
8τPσT 4

mp

1 + 2τP + 3
2τRτP

, (4)

where Tmp = Pµ/RΣg is the midplane temperature, µ = 2.33 is
the mean molecular weight, R is the universal gas constant, σ the
Stefan-Boltzmann constant, τR = κRΣd,tot/2 and τP = κPΣd,tot/2
are the Rosseland and Planck optical depths to the disk midplane,
which are calculated from the evolving surface density of total
dust population Σd,tot (see Sect. 2.2), and κP and κP (cm2 g−1) are
the Planck and Rosseland mean opacities taken from Semenov
et al. (2003). We note that the cooling and heating rates in
Dong et al. (2016) were written for one side of the disk and need
to be multiplied by a factor of 2.

The heating function per surface are of the disk is expressed
as

Γ =
8τPσT 4

irr

1 + 2τP + 3
2τRτP

, (5)

where Tirr is the irradiation temperature at the disk surface deter-
mined by the stellar and background blackbody irradiation as

T 4
irr = T 4

bg +
Firr(r)
σ

, (6)

where Firr(r) is the radiation flux (energy per unit time per unit
surface area) absorbed by the disk surface at radial distance r
from the central star. The latter quantity is calculated as

Firr(r) =
L∗

4πr2 cos γirr, (7)

where γirr is the incidence angle of radiation arriving at the disk
surface (with respect to the normal) at radial distance r. The inci-
dence angle is calculated using a flaring disk surface as described
in Vorobyov & Basu (2010). The stellar luminosity L∗ is the sum
of the accretion luminosity L∗,accr = (1 − ε)GM∗Ṁ/2R∗ arising
from the gravitational energy of accreted gas and the photo-
spheric luminosity L∗,ph that is due to gravitational compression
and deuterium burning in the stellar interior. The stellar mass
M∗ and accretion rate onto the star Ṁ are determined using
the amount of gas passing through the sink cell (see Sect. 2.4).
The properties of the forming protostar (L∗,ph and radius R∗) are
calculated using the stellar evolution tracks derived using the
STELLAR code. The fraction of accretion energy absorbed by
the star ε is set to 0.1.

2.2. Dusty component

In our model, dust consists of two components: small micron-
sized dust, and grown dust. The former constitutes the initial
reservoir for dust mass and provides the main input to opacity,
and the latter allows us to study dust growth and drift. Small dust
is assumed to be coupled to gas, meaning that we only solve the
continuity equation for small dust grains, while the dynamics
of grown dust is controlled by friction with the gas component
and by the total gravitational potential of the star, gaseous and
dusty components. Small dust can turn into grown dust, and this
process is considered by calculating the dust growth rate and the
maximum radius of grown dust. The resulting continuity and
momentum equations for small and grown dust are

∂Σd,sm

∂t
+ ∇p ·

(
Σd,smup

)
= −S (ar), (8)

∂Σd,gr

∂t
+ ∇p ·

(
Σd,grup

)
= S (ar), (9)

∂

∂t

(
Σd,grup

)
+

[
∇ ·

(
Σd,grup ⊗ up

)]
p

= Σd,gr gp + Σd,gr f p

+ S (ar)up, (10)

where Σd,sm and Σd,gr are the surface densities of small and grown
dust, up describes the planar components of the grown dust
velocity, S (ar) is the rate of dust growth per unit surface area,
f p is the drag force per unit mass between dust and gas, and ar
is the maximum radius of grown dust. To derive the expression
for S (ar), we assume a power-law distribution of dust grains
over radius N(a) = Ca−p and note that the total dust mass in a
specific grid cell does not change through dust growth, so that

4πρs

3
Cn

an
r∫

amin

a3−pda =
4πρs

3
Cn+1

an+1
r∫

amin

a3−pda = Σd,tot∆S , (11)

where Cn and Cn+1 are the normalization constants,
Σd,tot = Σd,gr + Σd,sm is the total surface density of dust, ∆S
is the surface area of a specific grid cell, indices an

r and an+1
r

describe the maximum dust radii at the current and next time
steps, amin = 0.005 µm is the minimum radius of small dust
grains, and p = 3.5 is the slope of dust distribution over
radius (not to be confused with a similar subscript index in
Eqs. (1)–(3), (8)–(10), and (20)).

Figure 1 illustrates our dust growth scheme, showing the dust
distribution at the current and next time steps n and n + 1 with
the red and blue lines, respectively. Here, a∗ = 1.0 µm is a thresh-
old value between small and grown dust components. The gray
area schematically represents the amount of small dust ∆Σd,sm
(per surface area) converted into grown dust during one hydro-
dynamic time step ∆t. We note that the area confined between
a∗ and an

r (highlighted in blue) should also be transferred above
an

r , but it does not change the mass of grown dust. The corre-
sponding mass per surface area in a specific numerical cell can
be expressed as

∆Σd,sm = Σn+1
d,sm − Σn

d,sm = −Σn
d,tot

an+1
r∫

an
r

a3−pda
a∗∫

amin

a3−pda

an
r∫

amin

a3−pda
an+1

r∫
amin

a3−pda

, (12)

and the rate of dust growth S (ar) can finally be expressed as

S (ar) = −
∆Σd,sm

∆t
. (13)

The minus sign reflects the fact that the difference
∆Σd,sm = Σn+1

d,sm − Σn
d,sm becomes negative when dust grows

in a specific cell, that is, when an+1
r > an

r . We note that S (ar) is
non-zero only if ar > a∗. In our models, small dust has radii in
the (amin : a∗) range, while grown dust has radii in the (a∗ : ar)
range with the temporally and spatially varying maximum
radius of grown dust ar. Equation (12) also implicitly allows for
conversion of grown dust to small dust as a result of collisional
fragmentation if an+1

r < an
r . This can occur when grown grains

are advected in the disk regions where the fragmentation barrier
set by Eq. (26) is lower than the current size of the advected
particles. In this case, the radius of dust particles is reduced to
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match the fragmentation barrier, which formally corresponds
to an+1

r < an
r and to fragmentation of grown dust back to small

dust. Finally, we note that the adopted dust size distribution
n(a) = Ca−p is used only to evaluate S (ar) using the total dust
density in a specific cell. The individual densities of small and
grown dust can also change through advection, and this may
produce a discontinuity at a∗, which is not taken into account in
the current model.

It is worthwhile to analyze how the value of ∆Σd,sm depends
on ar. To do this, we express ∆Σd,sm as

∆Σd,sm = −Σd,tot
I1I3

I2(I2 + I3)
, (14)

where

I1 =

a∗∫
amin

a3−pda, I2 =

an
r∫

amin

a3−pda, I3 =

an+1
r∫

an
r

a3−pda. (15)

We note that I3 is usually much smaller than I2, because the dif-
ference ∆ar = an+1

r − an
r caused by dust growth during one time

step is also small. Under these assumptions, we can write

∆Σd,sm ≈ −Σd,tot
I1I3

I2
2

. (16)

Noting further that an
r � amin and making an additional assump-

tion that p < 4, the integral I2 can be written as

I2 =
1

4 − p

(
(an

r )4−p − a4−p
min

)
≈

1
4 − p

(an
r )4−p. (17)

Furthermore, because an+1
r − an

r is small, I3 can be approximated
by the following expression:

I3 ≈ (an
r )3−p∆ar. (18)

Noting that I1 is constant, we finally obtain

∆Σd,sm ∝ −Σd,tot (an
r )p−5 ∆ar. (19)

We verified by numerical integration that Eq. (14) and the
approximate formula (19) yield similar results in all the adopted
ranges of dust sizes. Therefore, for the adopted power law
p = 3.5, ∆Σd,sm ∝ a−1.5

r , meaning that the conversion of small
into grown dust is more efficient when ar is small.

The evolution of the maximum radius ar is described by the
advection equation with a non-zero source term:

∂ar

∂t
+ (up · ∇p)ar = D, (20)

where the growth rate D accounts for the dust evolution that is
due to coagulation and fragmentation. We note that when D is
zero, Eq. (20) turns into the Lagrangian or comoving equation
for ar, guaranteeing that the bulk motion of grown dust, such as
compression or rarefaction, does not change the value of ar in
the absence of dust growth. We checked this essential property
of Eq. (20) by initiating a gravitational collapse of a cloud core
without dust growth and confirmed that ar stays constant and
equal to its initial value as the core collapses and the disk forms
and evolves.

We write the source termD as

D =
ρdvrel

ρs
, (21)

Fig. 1. Illustration of the adopted scheme for dust growth. The size dis-
tributions of dust grains at the current n and next n + 1 time steps are
shown with the red and blue lines, respectively. Here, amin is the min-
imum radius of small dust grains, while an

r and an+1
r are the maximum

radii of the grown dust at the current and next time step. Both distri-
butions are assumed to have the same power-law index. The gray area
represents the amount of small dust ∆Σd,sm (per surface area) converted
into grown dust during one hydrodynamic time step ∆t. The blue area
between a∗ and an is also transferred above an, but this operation does
not change the total mass of grown dust.

where ρd is the total dust volume density, vrel is the dust-to-dust
collision velocity, and ρs = 2.24 g cm−3 is the solid (internal)
density of grains. The adopted approach is an extension of the
monodisperse model of Stepinski & Valageas (1997), so that we
use the total dust volume density rather than that of grown dust
alone. This allows us to account for collisions not only within
the grown dust ensemble, but also between the grown and small
dust grains. Because vrel refers to the grown dust, the source term
D may be underestimated at the initial stages of dust evolution
when the collision velocities are dominated by the fast Brow-
nian motion of small dust grains. However, at the later stages,
when the turbulence-induced velocities start to dominate the
Brownian motion, the small difference in vrel for grown-to-grown
and grown-to-small dust grain collisions (see Fig. 3 in Ormel &
Cuzzi 2007) justify the adopted approach. Because the basic dust
dynamics is described in terms of the dust surface density, we
use the expression

ρd =
Σd,tot
√

2πHd
, (22)

as a proxy for the midplane dust volume density. We note that
here we assumed that the scale heights of both small and grown
dust are similar, and are equal to the scale height of the grown
dust Hd. This assumption can be violated in the presence of effi-
cient dust settling, when small grains are expected to be well
mixed with the gas (thus having the same scale height as the
gas), but the scale height of the grown dust is expected to be
smaller than that of the gas. This effect can decrease the total
volume density of dust and the growth rate efficiency. However,
as we demonstrate in Sect. 4, dust settling has a lesser effect
on dust growth than turbulent viscosity and dust fragmentation
barrier. The dust vertical scale height Hd = Hd(ar) is calculated
adopting the approach of Kornet et al. (2001; their Eq. (10)),
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which links the gas and dust vertical scale heights taking the
dust sedimentation into account.

The dust-to-dust collision velocity is calculated as
vrel = (v2

th + v2
turb)1/2. For the main sources of relative velocities

between the dust grains, we consider the Brownian motions with
dust collision velocities

vth =

√
16kBTmp

πma
, (23)

and the turbulence-induced velocities (Ormel & Cuzzi 2007;
Birnstiel et al. 2012)

vturb =
√

3αSt cs, (24)

where kB is the Boltzmann constant, Tmp = Pµ/RΣ is the gas
midplane temperature, and ma is the mass of grown dust grains
with maximum radius ar. The Stokes number is defined as

St =
ΩKρsar

ρgcs
, (25)

where the gas volume density is calculated as ρg = Σg/(
√

2πHg).
To summarize the adopted dust growth mechanism, we first
calculate the growth rate D from Eq. (21) using the local
quantities in a specific cell. The resulting value of D is used
to update the value of ar using Eq. (20), which in turn is
used in Eqs. (13) and (12) to compute the amount of small dust
converted into grown dust and the growth rate S (ar).

To simulate the fragmentation of dust grains that is due to
mutual collisions, we assume that the maximum radius of a dust
grain cannot exceed the fragmentation barrier (Birnstiel et al.
2012), which is defined as

afrag =
2Σgv

2
frag

3πρsαc2
s
, (26)

where vfrag is a threshold value for the fragmentation veloc-
ity. This effectively means that whenever ar exceeds afrag, the
growth rate D is set to zero. We note that even if D = 0, the
dust size in a given cell can change as a result of advection, as
Eq. (20) implies. The fragmentation velocities of dusty aggre-
gates depend on their properties and may vary in wide limits,
typically ∼1–10 m s−1 (Dominik & Tielens 1997; Benz 2000;
Blum & Wurm 2008). The numerical simulations of collisions
between icy dust aggregates suggest vfrag ≈ 20 m s−1 for sintered
aggregates (Sirono & Ueno 2014) and vfrag ≈ 50 m s−1 for non-
sintered aggregates (Wada et al. 2009). We adopt vfrag = 30 m s−1

in the fiducial model presented in Sect. 3 and explore lower val-
ues of vfrag in Sect. 4. In future studies, we plan to adopt a more
detailed approach, which will consider the dependence of vfrag on
the grain properties, such as their size, ice content, and porosity.

The comparison of the monodisperse growth model of
Stepinski & Valageas (1997) with the full-fledged dust growth
model was conducted in Birnstiel et al. (2012), showing the
validity of the monodisperse approach. However, we wish to
point out two possible caveats with this approximation. First,
grains that would experience a succession of growth and frag-
mentation events during their evolution, rather than directly
growing to a fragmentation boundary, would reach the limiting
size after a longer time. Second, the study of Birnstiel et al.
(2012) was applied to older disks (than in the current work),
which usually evolve slower than the dust size distribution. Here,

we study the early, more dynamical stage of disk evolution, and
it is not obvious that the limiting size approximation would also
match a more detailed dust evolution since the disk structure
evolves much faster. More accurate models of dust evolution
need to be employed in the future to test our assumptions. Finally,
we note that Pinilla et al. (2016) and Gonzalez et al. (2017) also
applied models for calculating the dust evolution in circumstellar
disks, which are different in certain aspects. More specifically,
the model of Pinilla et al. (2016) uses the full-fledged dust evolu-
tion model of Birnstiel et al. (2010), and not the two-population
approximation. Gonzalez et al. (2017) used the monodisperse
growth model of Stepinski & Valageas (1997) and added frag-
mentation as a decrease in size each time the relative velocities
of grains exceed the fragmentation threshold, instead of limiting
the growth to a grain size depending on that threshold.

2.3. Drag force

We express the drag force per unit mass between dust and
gas following common practice (e.g., Rice et al. 2004; Cha &
Nayakshin 2011; Zhu et al. 2012) as

f p =
up − up

tstop
, (27)

where tstop is the stopping time expressed in the Epstein regime
as

tstop =
arρsHg

√
2π

Σgcs
. (28)

Since this approach is valid only for the Epstein drag, we limit
the growth of dust in our modeling to a radius ar < 9λ/4 by
manually setting D to zero if this condition is violated. Here,
λ is the free mean path of grown dust particles defined as
λ = mH2

√
2πHg/(7 × 10−16 Σg), where mH2 is the mass of hydro-

gen molecule (Rice et al. 2004). Equation (27) can in principle
be used in the Stokes regime for as long as the Reynolds num-
ber Re = 4a|up − up|/(λcs) is smaller than unity. In this case, tstop
needs to be multiplied by 4a/(9λ). However, the Stokes regime
with Re < 1 is usually very narrow. We note that our definition of
ar in Eq. (28) implies that we follow the dynamics of dust grains
of maximum size, whereas in reality there is a spectrum of grown
dust grains between a∗ and ar. An alternative would be to define
ar as a weighted average between a∗ and ar, in which case the
dynamics of an averaged population of grown dust grains would
be computed. We defer these and other sophistications of our
model to follow-up studies.

2.4. Solution procedure and boundary conditions

Equations (1)–(3), (8)–(10), and (20) are solved using the
operator-split solution procedure as described in the ZEUS-2D
code (Stone & Norman 1992). The solution is split into the
transport and source steps. In the transport step, the update of
hydrodynamic quantities due to advection is performed using the
third-order piecewise parabolic interpolation scheme of Colella
& Woodward (1984). This step also considers the change in
maximum dust radius due to advection. We note that the term
(up · ∇p)a on the r.h.s. of Eq. (20) is not exactly advection, but
the derivative along the direction of dust velocity up. However,
this term can be recast as advection ∇p · (aup) minus a correc-
tion term a(∇p · up), the latter applied to the solution procedure
at the advection step. We finally note that we use the FARGO
algorithm to ease the strict limitations on the Courant condition,
which occur in numerical simulations of Keplerian disks using
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Fig. 2. Schematic illustration of the inner boundary condition. The
mass of material ∆Mflow that passes through the sink cell from the active
inner disk is further divided into two parts: the mass ∆M∗ contributing
to the growing central star, and the mass ∆Ms.c. settling in the sink cell.

the curvilinear coordinate systems converging toward the origin
(Masset 2000).

In the source step, the update of hydrodynamic quantities
due to gravity, viscosity, cooling, and heating, and also friction
between gas and dust components is performed. This step also
considers the transformation of small to grown dust and also
the increase in dust radius ar due to growth (Eqs. (12)–(20)). To
account for the friction terms, we apply the semi-implicit scheme
of Cha & Nayakshin (2011) in a modified source step defined as

un+1
p − un

p

∆t
=
un

p − un+1
p

tstop
+ g̃, (29)

where g̃ includes all non-friction terms on the r.h.s. of Eq. (10),
and ∆t is the hydrodynamic time step. This equation can be recast
in the following form:

un+1
p =

tstop

∆t + tstop

(
∆t

tstop
un

p + un
p + ∆t g̃

)
. (30)

This form correctly reproduces the two limiting cases un+1
p = un

p

for tstop → 0 and un+1
p = un

p + ∆t g̃ for tstop → ∞.
The internal energy per surface area due to cooling Λ

and heating Γ is updated implicitly using the Newton-Raphson
method of root finding, complemented by the bisection method
where the Newton–Raphson iterations fail to converge. The
implicit solution is applied to avoid too small time steps that may
emerge in regions of fast heating or cooling.

We use the polar coordinates (r, φ) on a two-dimensional
numerical grid with 256 × 256 grid zones. The radial grid is
logarithmically spaced, while the azimuthal grid is equispaced.
To avoid too small time steps, we introduce a “sink cell” at
rsc = 1.0 AU and impose a transparent inner boundary condi-
tion so that the matter (gas or dust) is allowed to flow freely from
the active domain to the sink cell and vice versa. The mass of
material that passes through the sink cell from the active inner
disk at each time step is further redistributed between the grow-
ing central star and the sink cell as ∆Mflow = ∆M∗ + ∆Ms.c.
(see Fig. 2) according to the following algorithm:

if Σn
s.c. < Σ

n
in.disk then

Σn+1
s.c = Σn

s.c. + ∆Ms.c./S s.c.

Mn+1
∗ = Mn

∗ + ∆M∗
if Σn

s.c. ≥ Σ
n
in.disk then

Σn+1
s.c. = Σn

s.c.

Mn+1
∗ = Mn

∗ + ∆Mflow.

Here, Σs.c. is the surface density of gas/dust in the sink cell,
Σin.disk the averaged surface density of gas/dust in the inner active
disk (the averaging is usually done over several AU immediately
adjacent to the sink cell, the exact value is determined by numer-
ical experiments), and S s.c. the surface area of the sink cell. The
exact partition between ∆M∗ and ∆Ms.c. is usually set to 95:5%.
We note that if ∆Mflow < 0, the material flows out of the sink
cell into the active disk. In this case, we update only the surface
density in the sink cell as Σn+1

s.c. = Σn
s.c. + ∆Mflow/S s.c. and do not

change the mass of the central star.
The calculated surface densities in the sink cell Σn+1

s.c. are fur-
ther used as boundary values for the surface densities in four
inner ghost zones, which have the size of the corresponding
active grid cells on the other side of the sink cell interface and
are needed for the piecewise parabolic advection scheme used in
the code. The radial components of velocities in the inner ghost
zones are set equal to their immediate counterparts in the active
disk, while the azimuthal components in the inner ghost zones
are extrapolated assuming Keplerian rotation as uφ,ghost/uφ,act =√

ract/rghost, where uφ,act is the φ-component of velocity in the
innermost active zones, and ract and rghost the radial positions
where φ-components of velocities are defined in the active and
ghost zones, respectively.

These boundary conditions enable a smooth transition of sur-
face density between the inner active disk and the sink cell,
preventing (or greatly reducing) the formation of an artificial
drop in the surface density near the inner boundary. We ensure
that our boundary conditions conserve the total mass budget in
the system. Finally, we note that the outer boundary condition is
set to a standard free outflow, allowing for material to flow out of
the computational domain, but not allowing any material to flow
in.

The code was tested on the test problems applicable to the
polar geometry, showing good performance on the relaxation and
angular momentum conservation problems (Vorobyov & Basu
2006). A small amount of artificial viscosity added to the code
to smooth shocks produces artificial torques that are many orders
of magnitude smaller than the physical gravitational and viscous
torques (Vorobyov & Basu 2007). Additional tests pertinent to
the dust component are presented in the appendix.

2.5. Initial conditions

Our numerical simulations start from a pre-stellar core with the
radial profiles of column density Σg and angular velocity Ωg
described as follows:

Σg(r) =
r0Σ0,g√
r2 + r2

0

, (31)

Ωg(r) = 2Ω0,g

( r0

r

)2

√

1 +

(
r
r0

)2

− 1

 , (32)

where Σ0,g and Ω0,g are the gas surface density and angular
velocity at the center of the core. These profiles have a small
near-uniform central region of size r0 and then transition to an
r−1 profile; they are representative of a wide class of observa-
tions and theoretical models (André 1993; Dapp & Basu 2009).
The core is truncated at rout = 0.045 pc, which is also the outer
boundary of the active computational domain (the inner bound-
ary is at rs.c. = 1 AU). The initial dust-to-gas ratio is set to 0.01,
and it is assumed that only small dust is initially present in the
core (Σd,gr is initially set to a negligibly low value). The radial
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Fig. 3. Gas surface density distribution in the inner 1000 × 1000 AU2

box at six evolutionary times starting from the onset of gravitational col-
lapse. The inset shows the fragments formed in the disk via gravitational
fragmentation. The black line in the inset highlights the region where
the Toomre parameter is less than unity. The scale bar is in log g cm−2.

profiles of the surface density and angular velocity of small
dust are then defined as Σd,sm(r) = 0.01Σg(r) and Ωd,sm(r) =
Ωg(r). The initial gas temperature is set to 20 K throughout
the core.

The initial parameters Σ0,g = 0.2 g cm−2 and r0 = 1200 AU
are chosen so that the core is gravitationally unstable and begins
to collapse at the onset of numerical simulations. The total ini-
tial mass of the core is Mcore = 1.03 M� and the adopted initial
value of Ω0,g = 1.8 km s−1 pc−1 results in the ratio of rotational-
to-gravitational energy β = 0.24%, typical for pre-stellar cores
(Casselli et al. 2002).

3. Main results

In this section, we study the long-term evolution of a circumstel-
lar disk formed during the gravitational collapse of our model
cloud core. The disk forms at t = 0.055 Myr, and the numer-
ical simulations are terminated at t = 0.5 Myr. The time is
counted from the onset of gravitational collapse (which is also
the onset of numerical simulations). The embedded phase of
star formation defined as the time period when the mass in the
envelope is greater than 10% of the total initial mass in the
core ends around t = 0.15 Myr. We therefore cover the entire
embedded phase of disk evolution plus some of the Class II
phase. The free parameters of our fiducial model are as follows:
α = 0.01 and vfrag = 30 m s−1. We also take dust settling into
account. The effect of varying free parameters is considered in
Sect. 4.

Figure 3 presents the gas surface density distribution Σg in
the inner 1000 × 1000 AU2 box. The computational domain
covers a much larger area (∼104 × 104 AU2), including the
infalling envelope, but we show only the most interesting inner
region, which covers the evolving disk. The central star forms at
t = 0.053 Myr and the disk forms about 2 kyr later. The sequence
of images illustrates how the disk grows with time and changes
its shape from compact and non-axisymmetric in the embedded
phase to extended and practically axisymmetric in the Class II
phase. In the embedded phase of evolution, the disk is gravi-
tationally unstable thanks to continuing mass-loading from the
infalling envelope, which results in the development of a notable

Fig. 4. Zoom-in onto the inner disk regions at t = 0.2 Myr: left column
– 200 × 200 AU2, middle column – 60 × 60 AU2, and right column –
10 × 10 AU2. Shown are the gas surface density in log g cm−2 (top
row), grown dust surface density in log g cm−2 (second row), gas-to-
grown dust mass ratio in log scale (third row), Stokes number in log
scale (fourth row), and maximum radius of dust grains ar in log cm.
The contour lines in the third, fourth, and fifth rows delineate the spiral
pattern in the gas surface density for convenience.

spiral structure and even leads to episodic fragmentation. The
inset at t = 0.15 Myr zooms on to the gaseous clump in the
150 × 150 AU2 box. To determine whether the disk fulfills the
Toomre fragmentation criterion, we adopted the modified defini-
tion of the Q-parameter that is appropriate for the near-Keplerian
disks. The black contour line outlines the region where the
Toomre parameter QT calculated using the following equation
is less than unity:

QT =
cdΩ

πG(Σg + Σd,tot)
, (33)

where cd = cs/
√

1 + ξ is the modified sound speed in the
presence of dust and ξ = Σd,tot/Σg the total dust-to-gas ratio.
Clearly, the element of the spiral arm where fragmentation
took place is Toomre-unstable. We defer a more rigorous analy-
sis of disk fragmentation and clump properties including their
dust content to a follow-up study with higher resolution. In
the T Tauri phase, the disk is characterized by a regular spiral
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Fig. 5. Velocity field for grown dust (relative to the gas) superimposed
on the gas surface density map in the vicinity of a prominent spiral arm
at t = 0.2 Myr.

structure, which slowly diminishes as the disk loses its mass
through accretion onto the star. Concurrently, the disk spreads
out as a result of the action of viscous torques (Vorobyov & Basu
2009).

In Fig. 4 we show the zoomed-in images of the gas surface
density (first row), surface density of grown dust (second row),
gas-to-grown dust mass ratio Σg/Σd,gr (third row), Stokes num-
ber (fourth row), and maximum radius of grown dust (bottom
row) at t = 0.2 Myr. In particular, the left, middle, and right
columns zoom on the inner 200 × 200 AU2, 60 × 60 AU2, and
10 × 10 AU2 disk regions, respectively. The contour lines of Σg
in the third and fourth rows of Fig. 4 outline the position of
the spiral arms, which serve as a proxy for the position of pres-
sure maxima (spiral arms are both denser and warmer than the
inter-arm regions). A comparison of the first and second rows
indicates that the spatial distribution of grown dust generally cor-
relates with the spatial distribution of gas in the sense that both
exhibit a similar spatial pattern. The third row demonstrates that
the inner disk is characterized by lower values of Σg/Σd,gr than
the outer disk, reflecting the process of gradual inward drift of
grown dust grains. We note that the spatial distribution of the
relative content of small-to-grown dust Σd,sm/Σd,gr is similar to
that of gas-to-grown dust Σg/Σd,gr (but is lower by about a factor
of 100) because small dust follows gas in our model.

The situation with spiral arms as the pressure maxima and
the likely places of dust accumulation is more complicated. The
spiral arms in the outer disk are on average characterized by
lower values of Σg/Σd,gr than the inter-arm regions (left panel
in the third row). At the same time, the accumulation of grown
dust in the inner disk that is due to inward radial drift is more
pronounced than accumulation of dust in the spiral arms (mid-
dle and right panels in the third row). The fourth row of Fig. 4
indicates that the spiral arms are characterized by low Stokes
numbers, which can be explained by higher gas densities and
temperatures in the spiral arms than in the inter-arm regions.
We note that the Stokes number in the Epstein regime also
depends linearly on the grain size, but a mild increase of ar
in the spiral arms is insufficient to compensate for a stronger
increase in gas density and temperature (see also Fig. 6), so that
the Stokes number effectively decreases. As numerical studies

Fig. 6. Surface densities of gas (red solid lines), small dust (blue dashed
lines), and grown dust (black solid lines) taken along the azimuthal cuts
at different distances from the star: r = 20 AU, r = 50 AU, r = 82 AU,
and r = 150 AU. The dashed pink and solid cyan lines show the gas
pressure (in the code units) and the maximum radius of dust grains ar
(in cm) taken along the same cuts. The evolution time is t = 0.2 Myr.
We applied different scaling factors for the small dust density, grown
dust density, and maximum dust radius.

of dust dynamics in gravitationally unstable disks indicate
(Gibbons et al. 2012; Booth & Clarke 2016), the dust concen-
tration efficiency depends on the Stokes number and is highest
for the Stokes number on the order of unity. For Stokes numbers
<0.1, the concentration of dust grains in pressure maxima may
be a slow process (because of rather efficient coupling with gas),
comparable to or longer than the lifetime of the spiral pattern in
our simulations.

A98, page 8 of 20

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731690&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731690&pdf_id=0


E. I. Vorobyov et al.: Evolution of disks with a dust component

Figure 5 presents the relative velocities between the grown
dust and gas components superimposed on the gas surface den-
sity map. We zoom in on one of the spiral arms in the disk
(stretching from the upper left to the bottom right corner) to
illustrate the dust drift in the vicinity of pressure maxima as rep-
resented by the spiral arm. The overall inward drift of grown dust
toward the spiral arm is clearly visible. The relative drift veloc-
ities are higher at the edges of the spiral because of lower gas
densities and, hence, weaker gas-to-dust coupling.

To illustrate the varying efficiency of grown dust concen-
tration in the inner and outer spiral arms, we plot in Fig. 6
the surface densities of gas (red solid lines), small dust (blue
dashed lines), and grown dust (black solid lines) taken along the
azimuthal cuts at different distances from the star: r = 20 AU,
r = 50 AU, r = 82 AU, and r = 150 AU. We also plot the
azimuthal profiles of the gas pressure and maximum radius of
dust grains ar. Spiral arms manifest themselves as local peaks
in the gas surface density and pressure. The contrast in the sur-
face density and pressure between the spirals and the inter-arm
regions is smaller and the pressure maxima are less sharp in
the inner disk regions. The azimuthal variations in pressure can
weaken in the inner disk because spiral arms converge and wind
up toward the disk center, as Fig. 4 indicates. This can also be
caused by a weakened GI, but only in the innermost 10–15 AU,
where the Q-parameter (see Fig. 11) becomes greater than 2.0.
Clearly, the azimuthal distribution of small dust follows that of
gas at all radial distances. On the other hand, the behavior of
grown dust is distinct from that of small dust. The contrast in
the grown dust density between the spiral arms and the inter-
arm regions increases at larger distances and becomes higher by
about a factor of two than the corresponding contrast in the gas
surface density. At r = 82 AU, for instance, Σd,gr is factors of 35
and 5 higher in the center of the spiral arm (φ ≈ 3.0 rad) than
in the immediate inter-arm region on the left- and right-hand
sides from the arm, respectively. The corresponding factors for
Σd,sm are 18 and 6. This implies accumulation of grown dust in
the outer parts of spiral arms. ar shows little correlation with the
spiral arms in the innermost and outermost disk regions (20 and
150 AU, respectively). In the intermediate disk regions (50 and
82 AU), some increase in ar at the positions of spiral arms is evi-
dent, which is likely due to faster growth in high-density regions.
However, this increase (maximum a factor of two) is insufficient
to compensate for the corresponding increase in the gas surface
density and temperature in the spiral arms, so that the Stokes
numbers decrease in the spiral arms (see also Fig. 4).

To understand why grown dust preferentially accumulates in
the outer parts of the spiral arms, we compare the characteristic
velocities of dust drift udrift with the velocity of dust in the local
frame of reference of the spiral pattern up − usp. The components
of the drift velocity can be approximated as (Birnstiel et al. 2016)

ur,drift ' −
1

St + St−1 η vK, uφ,drift ' −
1

1 + St2
η vK, (34)

where vK is the Keplerian velocity and η defines the devia-
tion of the gas rotation velocity from the purely Keplerian law
vφ = vK

√
1 − η. In the region of interest (r < 200 AU), the Stokes

number varies between 0.01 and 0.2 (see Fig. 8), so that the dust
drift is dominated by the azimuthal component uφ,drift. The bulk
velocity of dust is also dominated by the azimuthal component
uφ , and in the following analysis, we consider only the azimuthal
flow.

Figure 7 presents the radial profiles of |uφ,drift|, uφ − vsp, their
ratio ζ = |uφ,drift|/|uφ − vsp|, and the parameter η at t = 0.2 Myr.
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Fig. 7. Radial profiles of the azimuthal component of the dust drift
velocity |uφ,drift|, the azimuthal component of the dust bulk velocity
relative to the local velocity of the spiral pattern uφ − vsp, their ratio
ζ = |uφ,drift|/|uφ − vsp|, and the parameter η.

The velocity of the spiral pattern vsp is calculated by taking the
azimuthal cuts at 50 yr intervals and finding the angular velocity
with which the peaks in the gas density (spiral arms) propagate
at a given radial distance. When calculating the Keplerian veloc-
ity, we also take into account the enclosed disk mass because our
model disk is self-gravitating. The efficiency of dust accumula-
tion in spiral arms is highest in the regions where ζ is highest
because in these regions, the drift velocity dominates the bulk
velocity of dust in the local frame of reference of the spiral pat-
tern. These are also the regions where the spiral pattern nearly
corotates with the azimuthal dust flow. We note that uφ − vsp is
positive in the inner disk and negative in the outer disk, which
reflects the change in azimuthal dust flow near corotation – dust
moves faster than the spiral pattern inside corotation and slower
outside corotation. The value of ζ drops at small radial distances,
which explains why the accumulation of grown dust in the spi-
ral arms of the inner disk regions is inefficient. We note that
η is higher than what is usually assumed for axisymmetric cir-
cumstellar disks (e.g., a few per mille, see Birnstiel et al. 2016),
which is likely due to perturbations that the spiral arms cause
in the gas flow. Finally, we note that uφ,drift weakly depends on
the Stokes number for St < 1.0, and some concentration of small
dust particles in the spiral arms can also be expected. This cannot
be verified in our models since we assume that small dust moves
with the gas, but it needs to be investigated in future studies.

We conclude that the concentration of dust grains in the spi-
ral arms is most efficient near the corotation region, where the
azimuthal velocity of dust grains is closest to the local velocity
of the spiral pattern and the ratio ζ of the dust drift velocity to
the dust azimuthal velocity in the local frame of reference of the
spiral pattern is highest. The inner parts of the spiral arms are
characterized by moderate pressure maxima and low values of ζ
so that a clear dust concentration does not have time to form. We
also note that our multi-armed spiral pattern is rather transient,
as is also evident from Fig. 3. Dust accumulation in spiral arms is
expected to be more efficient in the presence of a grand-design,
two-armed spiral pattern, as was observed in Elias 2–27 (Pérez
et al. 2016; Tomida et al. 2017), given that these structures live
much longer than we found in our simulations.

To further analyze the dust dynamics, we plot in Fig. 8
the surface densities of small and grown dust (Σd,sm and Σd,gr,
respectively), the maximum radius of grown dust (ar), and the
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Fig. 8. Surface density of grown dust, maximum radius of dust grains,
and Stokes number as a function of the gas surface density within
200 AU from the star at t = 0.2 Myr. The black solid lines illustrate
the linear and quadratic dependencies to facilitate comparison.

Stokes number (St) as a function of gas surface density (Σg) at
t = 0.2 Myr. Only the data for the inner 200 AU around the star
were used. The black solid lines illustrate the linear and quadratic
functional dependence on Σg. Clearly, Σd,sm follows the expected
linear dependence on Σg because of the strict coupling between
these components. A mild weakening of the Σd,sm vs. Σg depen-
dence in the high-gas-density limit can be explained by a more
efficient conversion of small grains into large ones in the denser
inner disk. The surface density of grown dust Σd,gr, on the other
hand, reveals a more complicated pattern with the linear depen-
dence on Σg at the low-density tail and a quadratic or even steeper
dependence in the high-gas-density limit. The likely explanation
for this phenomenon is the inward radial drift, which increases
the relative abundance of grown dust in the inner disk regions
that are characterized by the highest gas surface densities. More-
over, the surface density of grown dust approaches that of small
dust at the highest Σg (i.e., in the innermost disk parts). The
Stokes numbers anticorrelate with the gas surface density, as was
already noted in Fig. 4. This trend is especially pronounced in
the high-gas-density limit. The maximum radius of dust grains
ar shows a more complicated pattern – it grows with Σg in the
low and intermediate gas-density regime, but saturates or even
drops in the high gas-density limit. As we demonstrate below,
this behavior is caused by grown dust reaching the fragmentation
barrier in the inner disk.

Figure 9 presents the azimuthally averaged radial profiles of
gas surface density (blue solid lines, first row), gas midplane
temperature Tmp (blue solid lines, second row), surface densi-
ties of small dust grains and grown dust (blue dashed and solid
lines, third row), and maximum radius of dust grains (blue solid
lines, bottom row). The black dashed and dash-dotted lines in
the second row show the gas midplane temperatures that would
be expected in the presence of either stellar and background irra-
diation or viscous heating only, respectively. The black dashed
line in the bottom row represent the fragmentation barrier. The
same time instances as in Fig. 3 are shown: t = 0.2 Myr (left
column) and t = 0.4 Myr (right column). In the early evolution
at t = 0.2 Myr, a piecewise radial distribution of gas surface
density is evident, with a shallower profile in the inner parts
of the disk and a steeper profile in the outer disk. This form of
Σg(r) can be expected for disks whose properties are governed
by viscous transport in the inner (hotter) disk regions and by

Fig. 9. Azimuthally averaged radial profiles of the gas surface density
(blue solid lines, top row), gas midplane temperature (blue solid lines,
second row), surface densities of small and grown dust (blue dashed and
solid lines, third row), and maximum radius of grown dust (blue lines,
bottom row) at two evolutionary times: t = 0.2 Myr (left column) and t =
0.4 Myr (right column). The dotted lines present various dependencies
on radial distance r to facilitate comparison. The black dashed and dash-
dotted lines in the second row show the gas midplane temperatures that
would be expected in the presence of either stellar + background irra-
diation or viscous heating only, respectively. The red dash-dotted lines
in the third row are the total dust-to-gas mass ratio. Finally, the black
dashed lines in the bottom row present the fragmentation barrier.

gravitational instability in the outer (colder) regions (e.g., Lodato
& Rice 2005; Vorobyov & Basu 2009). The second row demon-
strates that the gas temperature in the outer disk is controlled
by the stellar and background irradiation, while in the inner
disk regions (r < 25 AU), viscous heating greatly dominates
heating as a result of stellar and background radiation, and vis-
cosity becomes the dominant transport mechanism. In the later
evolution at t = 0.4 Myr, the radial profile of Σg loses its piece-
wise shape. At this stage, gravitational instability subsides (as
is evident in Fig. 3) and the disk dynamics is governed mostly
by viscous torques. These torques act to spread out the disk
outer parts, leading to the gas surface density profile that is bet-
ter described by an exponent than by a piecewise power law
(Lynden-Bell & Pringle 1974; Vorobyov 2010).

The third row in Fig. 9 describes the azimuthally averaged
characteristics of the dusty disk component. The radial distri-
bution of small dust Σd,sm follows that of gas, but the radial
distribution of grown dust shows notable deviations from that
of gas because of inward drift. The increase of Σd,gr toward the
star is faster than that of Σd,sm, so that the ratio Σd,gr/Σd,sm gradu-
ally rises at smaller radii. At a radial distance of a few AU, Σd,gr
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Fig. 10. Top panel: integrated masses of the disk and envelope (solid
and dash-dotted line) and the mass of the central star (dashed line) as
a function of time. Bottom panel: total masses of the grown dust (blue
solid line) and small dust (red solid line) in the disk as a function of
time. We also show the masses of small and grown dust that passed
through the sink cell (red dashed and blue dashed lines, respectively).

becomes comparable to Σd,sm. The total dust-to-gas ratio ξ shown
by the red dash-dotted line, however, does not show significant
deviations from the initial value of 0.01. Small grains vastly dom-
inate the dust disk mass in the disk regions beyond 1.0 AU. This
is a consequence of efficient inward drift of grown dust and con-
tinuing replenishment of small dust from the infalling envelope
in the embedded phase of disk evolution.

Finally, the bottom row presents the radial profile of the max-
imum dust radius ar. Clearly, the maximum growth occurs at r =
20–40 AU, where ar becomes as large as several centimeters. In
fact, the growth at smaller distances is limited by the fragmen-
tation barrier, as was also found in Gonzalez et al. (2015), for
example. At larger distances r >∼ 100 AU, however, dust does not
grow to the fragmentation barrier and hardly exceeds 1.0 mm in
radius.

Figure 10 presents various integrated characteristics in our
model. In particular, the top panel shows the masses of gas in
the disk and envelope and the stellar mass as a function of time.
The bottom panel shows the masses of small and grown dust
in the disk and also the mass of dust that passed through the
sink cell. We note that the masses of gas and dust in the disk
are calculated only for the disk regions beyond rsc = 1.0 AU,
that is, for the disk regions that are resolved in our numerical
simulations. The mass of gas in the disk becomes as high as
0.3 M� in the embedded phase (t ≤ 0.15 Myr) and gradually
declines afterward. The mass of grown dust in the disk reaches
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Fig. 11. Azimuthally averaged radial profiles of the maximum radius ar
in models with different α-parameters and fragmentation velocities as
indicated in the panels. The evolution time in all panels is t = 0.2 Myr.
The solid blue lines are the model results, and the dashed black lines are
the maximum grain radius afrag set by the fragmentation barrier defined
in Eq. (26). The red solid lines show the Toomre Q-parameter calculated
using Eq. (33). The red dashed lines mark the Q = 2.0 threshold for
convenience.

60 Earth masses in the embedded phase and drops to 30 Earth
masses in the T Tauri phase as a result of protostellar accretion.
At the same time, the mass of small dust in the disk (≤ 1.0 µm)
approaches 1000 Earth masses in the embedded phase and
gradually declines to 600 Earth masses at t = 0.5 Myr, meaning
that most of the total dust mass in the disk beyond 1.0 AU
remains in the form of small dust grains. This can also be seen
from the third row of panels in Fig. 9. At the same time, the mass
of grown dust that passed through the sink cell is much higher
than what remains in the active disk. In fact, the masses of small
and grown dust that have passed through the sink by the end
of simulations (t = 0.5 Myr) are comparable. This means that
our fiducial model with α = 0.01 and vfrag = 30 m s−1 is rather
efficient in converting small to grown dust, but most of grown
dust quickly drifts in the innermost, unresolved disk regions. The
fast inward drift of grown dust and continuing replenishment of
small dust from the infalling envelope (in the embedded phase)
explains why the small dust grains vastly dominate the disk mass
beyond 1.0 AU. We note that the process of small-to-grown dust
conversion is very fast once the disk forms at t ≈ 0.056 Myr.
The mass of grown dust reaches 40 Earth masses at 10 kyr after
disk formation and a local maximum of 60 Earth masses at
46 kyr after disk formation.

4. Parameter space study

In this section, we study the effect of free parameters in our mod-
els on the distribution of grown dust in the disk. In particular,
we consider a lower value of α = 0.001 and lower values of the
fragmentation velocity vfrag = 10 m s−1 and vfrag = 20 m s−1.
In addition, we consider a model without dust settling, which
is motivated by the study of Rice et al. (2004), who found that
vertical stirring in a gravitationally unstable disk prevents dust
particles from settling to the midplane. This effectively means
that the dust vertical scale height Hd is set equal to the vertical
scale height of gas Hg.

Figure 11 presents the azimuthally averaged radial profiles of
the maximum radius ar in models with different α-parameters
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and fragmentation velocities at t = 0.2 Myr. More specifically,
the top left panel corresponds to the fiducial model with α = 0.01
and vfrag = 30 m s−1. Other panels correspond to models with
α = 10−3 and vfrag = 30 m s−1 (top right), α = 0.01 and two val-
ues of vfrag = 10 m s−1 and vfrag = 20 m s−1 (bottom left; top
curves correspond to vfrag = 20 m s−1) and to the model with
α = 0.01 and vfrag = 30 m s−1, but without dust settling (bot-
tom right). The solid blue lines are the model results, and the
dashed black lines are the maximum grain radius afrag set by the
fragmentation barrier.

In the fiducial model, the dust radius does not exceed a
few centimeters in the innermost disk, slightly increases at
10–30 AU, and gradually declines at larger radii. In the inner
30 AU, the dust growth is clearly limited by the fragmentation
barrier, whereas at larger radii, the dust growth is either slow or
limited by inward drift. Turbulence affects dust growth in several
ways. First, it facilitates dust growth via an increased collision
rate. However, too high grain-grain relative velocities lead to
destructive collisions. We do not follow individual trajectories of
dust particles and a succession of dust growth and fragmentation
events. Instead, our dust growth model includes a limitation on
the grain size as described by Eq. (26), which implicitly takes the
destructive effect of turbulence into account, although in a sim-
plified manner. Second, turbulence affects transport processes
and, hence, the disk density and velocity structure. Third, dust
grains are efficient absorbers of free electrons (Ivlev et al. 2016)
and can modulate the ionization fraction and the development of
the MRI. It is therefore non-trivial to predict the exact effect of
turbulence on dust growth.

The maximum growth of dust grains is found in the α = 10−3

model, which can be explained by a lower turbulence (and lower
α) and denser inner disk, both causing the fragmentation barrier
to increase. The gas density in the inner disk of the α = 10−3

model increases because of the decreased viscous mass trans-
port. We illustrate this phenomenon in Fig. 12 by comparing
the radial profiles of the gas surface density, viscous torques,
and gravitational torques in the α = 10−3 model with the cor-
responding radial profiles in the fiducial model (α = 10−2) at
t = 0.2 Myr. We focus on the inner disk regions where the dif-
ference in the maximum grain size is most pronounced. The net
gravitational and viscous torques at a given radial distance r are
found by summing all local viscous and gravitational torques
defined as

τgr(r) =
∑
φ

m(r, φ)
∂Φ

∂φ
, (35)

τvisc(r) =
∑
φ

r(∇ ·Π)φS (r, φ), (36)

where m(r, φ) is the gas mass in a cell with polar coordinates
(r, φ), Φ is the gravitational potential, and S (r, φ) is the sur-
face area occupied by a cell with polar coordinates (r, φ). The
summation is performed over the polar angle φ for grid cells with
the same radial distance r. To reduce noise, the resulting torques
were further averaged over a time period of 200 yr. Clearly, the
viscous torques in the α = 10−3 model are systematically lower
(by absolute value) than in the fiducial model. Moreover, positive
values of the viscous torques are seen in both cases, but at dif-
ferent radii, and are to be expected when spiral arms are present.
At the same time, the gravitational torques in both models are
negligible (as compared to the viscous ones) in the inner 7 AU
for the α = 10−3 model and in the inner 20 AU in the fiducial
model because the GI in the inner, hot disk regions is weaker

Fig. 12. Azimuthally averaged profiles of the gas surface density,
viscous torques, and gravitational torques in the inner 40 AU in the
α = 10−3 model and the α = 10−2 model (fiducial one) at t = 0.2 Myr.
The torques are shown in the code units. The black dotted line marks
the zero-torque line for convenience.

(see, e.g., Fig. 4). This is also evident from the radial profiles
of the Toomre Q-parameter shown by the red lines in Fig. 11.
As a result, mass transport in the inner 10 AU of the α = 10−3

model is less efficient, causing matter to accumulate in the inner
disk and raising the gas surface density. A similar trend of higher
Σg, lower τvisc and negligible τgr in the α = 10−3 model holds at
later evolutionary times. In this model, dust can grow to meter-
sized boulders in the inner 10 AU. Beyond 10 AU, however, the
maximum radius of dust grains drops notably below afrag. In the
models with lower values of the fragmentation velocity shown in
the bottom left panel of Fig. 11, the dust radius is notably smaller
than in the fiducial model with vfrag = 30 m s−1, which is clearly
caused by a lower fragmentation barrier. We conclude that low
values of α, together with high values of vfrag, are needed for
dust grains to grow to radii greater than a few cm. Finally, we
note that the presence or absence of dust settling has little effect
on the size of dust grains in the inner disk where the grain size
is limited by the fragmentation barrier, which does not depend
on the dust volume density (see Eq. (26)). In the outer disk, the
grain size in the model without settling is slightly lower than in
the model with settling because dust growth depends linearly on
the volume density of dust grains (see Eq. (21)) and ρd is higher
in the case with dust settling.

Figure 13 presents other results of our parameter space study.
In particular, the first two rows show the total dust mass in the
disk as a function of time for the fiducial model with α = 10−2

and vfrag = 30 m s−1 (top left), for the model with α = 10−3

and vfrag = 30 m s−1 (top right), for the model with α = 10−2 and
vfrag = 20 m s−1 (middle left), and for the model with α = 10−2

and vfrag = 10 m s−1 (middle right). The bottom row presents

A98, page 12 of 20

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731690&pdf_id=0


E. I. Vorobyov et al.: Evolution of disks with a dust component

0.1 0.2 0.3 0.4 0.5

M
as

s 
of

 d
us

t i
n 

th
e 

di
sk

 (M
E

ar
th

)

100

101

102

103

104

Time (Myr)
0.1 0.2 0.3 0.4

M
as

s 
of

 d
us

t i
n 

th
e 

di
sk

 (M
E

ar
th

)

100

101

102

103

104

Time (Myr)
0.1 0.2 0.3 0.4 0.5

M
as

s 
of

 d
us

t i
n 

th
e 

di
sk

 (M
E

ar
th

)

100

101

102

103

104

small dust in disk
grown dust in disk

Radial distance (AU)
10 100 1000

R
at

io
 o

f e
nc

lo
se

d 
du

st
 m

as
se

s

10-1

100

101

102

103

104

105

α=0.01; vfrag= 30 m s-1

α=0.01; vfrag= 20 m s-1

α=0.01; vfrag=10 m s-1 

α=0.001; vfrag=30 m s-1

α=0.01; vfrag = 30 m s-1; 
               no settling

t=0.2 Myr

Time (Myr)
0.1 0.2 0.3 0.4 0.5

M
as

s 
of

 d
us

t i
n 

th
e 

di
sk

 (M
E

ar
th

)

100

101

102

103

104

α=0.001 and vfrag = 30 m s-1
α=0.01 and vfrag = 30 m s-1

α= 0.01 and vfrag=10 m s-1

Radial distance (AU)
10 100 1000

R
at

io
 o

f e
nc

lo
se

d 
du

st
 m

as
se

s

10-1

100

101

102

103

104

105

t=0.4 Myr

α=0.01 and vfrag=20 m s-1

Fig. 13. Parameter space study of dust mass in the disk. Top and middle
rows: The mass of small and grown dust in the disk (the red and blue
solid lines) as a function of time for the fiducial model (top left) and for
models with varying free parameters as indicated in each panel. Bottom
rows: The ratio of enclosed dust masses Md,gr(r)/Md,sm(r) as a function
of radial distance r at two evolution times: t = 0.2 Myr and t = 0.4 Myr,
for the fiducial model and for models with varying free parameters.

the ratio of enclosed dust masses Md,gr(r)/Md,sm(r) as a function
of radial distance r at different evolution times for the fiducial
model and for models with varying free parameters. Clearly,
reducing the α-parameter has a notable effect on the total mass of
grown dust in the disk, which is higher by about an order of mag-
nitude by the end of numerical simulations as compared to the
fiducial case of α = 0.01. The increase is caused by inefficient
mass transport in the inner 10 AU. The resulting pile-up of grown
dust in the inner disk (relative to small dust, which traces the gas
distribution) is clearly seen in the ratio Md,gr(r)/Md,sm(r) shown
by the blue lines in the bottom row of Fig. 13. It is an interesting
finding, showing that the pile-up of grown dust can occur even
for constant but sufficiently low viscous α ≤ 10−3 in circumstel-
lar disks with a radially varying strength of GI. There is also a
clear tendency for the increase in the ratio of enclosed masses
toward the star. This trend becomes more pronounced with time,
reflecting a gradual inward drift of grown dust. Our numerical
findings are in agreement with recent observations of the FU
Orionis system using VLA, which have found that millimeter-
and centimeter-sized dust is localized in the inner several AU
(Liu et al. 2017).

It is interesting that decreasing vfrag (and making grains more
prone to destruction) has a similar effect – the mass of grown
dust in the disk has increased by about an order of magni-
tude as compared to the fiducial model. The effect is especially
pronounced in the ratio of enclosed masses Md,gr(r)/Md,sm(r)
shown in the bottom row of Fig. 13. In the fiducial case with
vfrag = 30 m s−1 , the ratio Md,gr(r)/Md,sm(r) is about unity in
the innermost disk and gradually declines at larger radii. In the

vfrag = 20 m s−1 model, this ratio is already greater than unity
in the inner 10 AU and increases sharply in the innermost disk
regions, indicating a more efficient conversion of small to grown
dust for lower values of vfrag. In the vfrag = 10 m s−1 model, the
inner several AU are completely depleted of small dust grains.
This counterintuitive effect of increased small-to-grown dust
conversion for lower values of vfrag is caused by a juxtaposition
of two factors: an increased efficiency of small-to-grown dust
conversion for lower values of ar and inward drift of grown dust
grains. Decreasing vfrag acts to decrease the maximum radius ar
because the fragmentation barrier is lower (see Fig. 11). This
in turn increases the conversion efficiency of small to grown
grains because S (ar) increases as ar decreases (see Eq. (19)).
The grown dust drifts inward and grains with smaller ar from
outer disk regions take their place, thus sustaining a cycle of dust
growth.

We further illustrate this phenomenon in Fig. 14, show-
ing the azimuthally averaged profiles of the Stokes number
(top panel), surface density of grown dust (middle panel), and
integrated masses of grown dust that passed through the sink
cell and remaining in the disk (bottom panel) in models with
vfrag = 10 m s−1 and vfrag = 30 m s−1. The Stokes numbers are
systematically lower in the vfrag = 10 m s−1 model because of
smaller ar, indicating a slower radial drift of grown dust. A less
efficient dust drift in the vfrag = 10 m s−1 model can also be seen
from the ratios Md,gr(disk)/Md,gr(total) of the grown dust mass in
the disk to the total produced mass of grown dust (that residing
in the disk and passed through the sink cell). These ratios are 7.5
and 2.2% for the vfrag = 10 m s−1 and vfrag = 30 m s−1 models,
respectively. This indicates that low vfrag models can be described
as causing a better retention of grown dust in the disk, as opposed
to favoring a more efficient dust growth and reaching larger dust
sizes. As a result, the gas surface density of grown dust increases
in the vfrag = 10 m s−1 model, as is shown in the middle panel of
Fig. 14. In both models, the amount of grown dust that passed
through the sink cell in the inner (unresolved) 1 AU is notably
higher than what remains in the rest of the disk. We note that
without inward dust drift, this mechanism of efficient small-to-
grown dust conversion and dust accumulation would not work.
We note that fast conversion of small to grown dust grains in
the innermost disk regions was also reported by Birnstiel et al.
(2010), who used a more sophisticated dust growth scheme, but
considered a semi-analytic prescription for disk dynamics.

We emphasize that in all models, the process of small-to-
grown dust conversion is very fast. As Fig. 13 indicates, the mass
of grown dust reaches tens or even hundreds of Earth masses
already by the end of the embedded phase at t = 0.15 Myr. In
the model with α = 10−3, the mass of grown dust continues to
increase in the early T Tauri stage, while it slowly decreases in
the other models. The radial distribution of grown dust is, how-
ever, distinct in different models. Figure 15 shows the enclosed
mass of grown dust Md,gr(r) as a function of radial distance at
t = 0.2 Myr. In the α = 10−3 model, almost all grown-dust mass
is concentrated in the inner several AU, while other models are
characterized by a notably smoother radial distribution of grown-
dust mass. It might be hard to detect grown dust in the α = 10−3

model because the absolute mass in grown dust grains outside
of the inner several AU is very limited. We note that the total
mass of grown dust of several hundred Earth masses concen-
trated in a narrow inner region with a width of several AU (as
in the α = 10−3 model) may be sufficient for the formation of
super-Earths, even if the conversion efficiency of dust to solid
planetary cores is just a few percent.
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Fig. 14. Azimuthally averaged profiles of the Stokes number (top
panel), surface density of grown dust (middle panel), and integrated
masses of grown dust that passed through the sink cell and remaining in
the disk (bottom panel) in models with vfrag = 10 m s−1 (blue lines) and
vfrag = 30 m s−1 (red lines). The radial profiles of Σd,gr and St are taken
at t = 0.2 Myr.

5. Model caveats and future improvements

In the current model, we did not account for the momentum
transfer from dust to gas, which is frequently referred to as
the dust “back reaction”. As reported in Gonzalez et al. (2017),
this effect can be important if the conditions for dust trapping
and subsequent growth are met. We will treat this effect in
follow-up studies as soon as we find an appropriate numerical
scheme to overcome the strict limitations on the hydrodynami-
cal time step that arise when back reaction is included (see the
appendix).

While the adopted model of dust growth allowed us to
make a first step toward self-consistent modeling of the gas and
dust dynamics during the long-term evolution of a protostellar
disk, it is rather simplistic because it considers only two grain

Fig. 15. Enclosed mass of grown dust as a function of radial distance
at t = 0.2 Myr for several models with different free parameters as
indicated in the legend.

populations – small dust and grown dust. We plan to introduce
more dust size bins in future studies, as was done in Birnstiel
et al. (2010), for example. The assumption of a monodispersity of
grown dust is hard to reconcile with the assumption of a power-
law size distribution and it limits our treatment of grain collision
velocities. The relative velocity is a function of size of colliding
grains (Birnstiel et al. 2016), and the monodisperse approxi-
mation could underestimate the coagulation efficiency. Another
critical assumption is the adoption of a constant (in time and
space) power-law index of the dust size distribution. This means
that at every time step, the dust particles are redistributed over a
new interval in radius (amin, an+1

r ) keeping the same power-law
index p. This assumption could be violated, as shown in Brauer
et al. (2008), for instance. In addition, other understudied factors
such as GI-induced turbulent velocity (Rice et al. 2004; Booth
& Clarke 2016), grain charging (Okuzumi et al. 2011; Akimkin
2015), dependence of fragmentation velocity vfrag on the compo-
sition of dust grains, and possible temporal and spatial variations
in the viscous α-parameter further complicate the picture. This
diversity of important factors demands a step-by-step approach
and clear understanding of the model limitations. Therefore we
plan to refine the model of dust growth and complement it with
a more detailed treatment of important processes in the near
future.

6. Conclusions

We have numerically studied the early evolution of a circumstel-
lar disk formed through the gravitational collapse of a rotating
pre-stellar core of 1.03 M� . The evolution of the disk (beyond
1 AU) was computed using the numerical hydrodynamics code
in the thin-disk limit that is similar in method to the ZEUS code
(Stone & Norman 1992), which was modified to include a dust
component. Our numerical simulations covered the embedded
and early T Tauri phases of disk evolution and took the disk self-
gravity (both of gas and dust), friction of gas on dust, turbulent
viscosity using the α-parameterization, and stellar irradiation
into account. In this study, we assumed a spatially and temporar-
ily constant α-parameter. We followed the approach of Birnstiel
et al. (2012), in which the dusty disk consists of two components:
sub-micron-sized dust (≤1.0 µm), and grown dust (>1.0 µm) with
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a maximum radius ar calculated using the method of Stepinski
& Valageas (1997). Our findings can be summarized as follows:

– The process of dust growth known for the older proto-
planetary phase also holds for the embedded phase of disk
evolution. In this early phase, dust growth occurs in the entire
disk, but its efficiency depends on the radial distance from
the star – ar is largest in the inner disk and gradually declines
with radial distance. In the inner 20–30 AU, ar is limited
by the assumed fragmentation barrier, while at larger radii,
ar never grows to the fragmentation barrier, implying either
slowed-down dust growth or efficient inward drift of grown
dust grains.

– The process of small-to-grown dust conversion is very fast
once the disk is formed. The mass of grown dust in the
disk ( beyond 1 AU) reaches tens or even hundreds of Earth
masses as soon as in the embedded phase of star forma-
tion. The highest concentration of grown dust is found in
the α = 10−3 model, where several hundred Earth masses
can be accumulated in a narrow region of several AU from
the star by the end of the embedded phase. Models with
α = 10−2 demonstrate a notably smoother radial distribution
of enclosed mass of grown dust, regardless of the chosen
value for fragmentation velocity. The amount of grown dust
that drifts in the inner unresolved disk regions (inside 1 AU)
by the end of our simulations (0.5 Myr) can be even higher,
on the order of thousands of Earth masses.

– Dust does not usually grow to radii greater than a few cen-
timeters. A notable exception are models with α <∼ 10−3,
where dust can grow to meter-sized boulders in the inner
10 AU. In this case, a narrow region of several AU devel-
ops in the inner disk, which is characterized by reduced
efficiency of mass transport via viscous and gravitational
torques (low α and high Toomre Q-parameter). This region
is similar to a classic dead zone caused exclusively by vary-
ing viscous α-parameter, and it assists dust accumulation and
growth in the accompanying pressure maxima.

– The efficiency of small-to-grown dust conversion depends
on the α-parameter and fragmentation velocity vfrag. In the
fiducial model (α = 10−2 and vfrag = 30 m s−1), small grains
vastly dominate the dust disk mass beyond 1.0 AU. This
is a consequence of efficient inward drift of grown dust in
the inner unresolved disk regions (<1 AU) and continuing
replenishment of small dust from the infalling envelope. For
lower α, grown grains dominate in the inner several AU,
where a zone with reduced mass transport develops and
grown dust accumulates. For lower vfrag, the conversion is
also more efficient because of a slower radial drift of grown
dust grains that is due to smaller ar and lower St, meaning
a better retention of grown dust in the disk, and because of
the inverse dependence of the dust growth rate S (ar) on ar
in our dust growth model. For vfrag = 10 m s−1, essentially
all small dust (≤1.0 µm) is converted into grown dust in the
inner 10 AU, in agreement with Birnstiel et al. (2010).

– The efficiency of grown dust accumulation in spiral arms
depends on the radial position in the disk and is most effi-
cient near corotation, where the azimuthal velocity of dust
grains is closest to the local velocity of the spiral pattern.
This is also the region where the ratio ζ of the dust drift
velocity to the dust azimuthal velocity in the local frame of
reference of the spiral pattern is highest. For instance, the
contrast in Σd,gr between the spiral arms and the inter-arm
regions near corotation (r = 80 AU) is a factor of 2 higher
than that of Σd,sm, indicating grown dust accumulation.

Conversely, the inner parts of the spiral arms that are located
inside corotation (r <∼ 50 AU) are characterized by moderate
pressure maxima and ζ that drops sharply, so that a clear dust
concentration does not have time to form.

The results of our study demonstrate that the evolution of dust
in early embedded disks needs to be taken into account when
setting the initial state for dust in older protoplanetary disk stud-
ies. An upper limit on the dust radius of 0.25–1.0 µm usually
taken for the MRN dust distribution (Mathis et al. 1977) is cer-
tainly exceeded by the end of the embedded phase. Moreover, the
maximum radius of dust grains depends on the radial position
in the disk and is not a constant in space. The radial distribu-
tion of grown dust does not follow that of small dust because
of the efficient inward radial drift taking place in the embed-
ded phase. Grown dust is more abundant in the inner than in
the outer disk regions, and an appreciable amount of grown dust
drifts in the inner unresolved 1 AU of the disk, probably making
these disk regions more optically thick. In Appendix A, we pro-
vide analytical fits to the disk state at the end of the embedded
phase.

We also note that in our models the spiral pattern in the
early embedded phase of disk evolution appears to be volatile;
its shape is stirred on timescales of a few thousand years by
differential rotation, nonlinear interaction between different spi-
ral modes and gravitational interaction with migrating gaseous
clumps. The process of dust accumulation in spiral arms should
be more efficient in the presence of a grand-design, two-arm
spiral pattern as was observed in Elias 2–27 (Pérez et al. 2016;
Tomida et al. 2017), given that these structures live much longer
than what was found in our simulations.
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Appendix A: Analytical fits to the disk at the end
of the embedded phase

In this section, we provide analytical fits to the disk in the fidu-
cial model at the end of the embedded phase at t = 0.2 Myr
(see Fig. 9). These azimuthally averaged profiles can be used as
an initial state when modeling older protoplanetary disks. The
inner and outer disk radii are taken to be 1 AU and 300 AU,
respectively.
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]
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, for r < 30 AU, (A.1)
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, for r ≥ 30 AU, (A.7)
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)1.46
, for r ≥ 30 AU, (A.9)
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)0.76
, for r < 30 AU, (A.10)

Hd [cm] = 10−2.5
( r
AU

)1.52
, for r ≥ 30 AU. (A.11)

The scale heights of gas and grown dust (including settling)
are provided so that the volume distributions of gas and dust
density can be recovered.

Appendix B: Testing dust dynamics equations

Here, we provide the results of several essential test problems
addressing the ability of our scheme to reproduce the known ana-
lytic solutions for a mixture of gas and dust components. While
the Sod shock tube and dusty wave problems imply constant-
size grains, the dust ring problem for constant Stokes numbers
allows implicitly for radial variations in the dust size, as can be
expected from radially varying disk densities, temperatures, and
angular frequencies (see the definition of the Stokes number in
Eq. (25)).

B.1. Dust ring

For the first test problem, we consider radial drift of dust par-
ticles in a steady-state circumstellar disk. We make use of
the analytic solution provided in Nakagawa et al. (1986) and
Armitage (2014), for instance,

ur

vK
= −

η

St + St−1 . (B.1)

The initial radial velocity of dust is set to zero (ur = 0) and the
rotation velocity is set to the Keplerian velocity (uφ = vK). The
mass of the central star is set to M∗ = 0.5 M�.
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Fig. B.1. Radial velocity of test particles in terms of Keplerian velocity.
The points indicate the results of numerical simulations, and the solid
line expresses the analytical solution (B.1).

First, we use test dust particles to compare the resulting
drift velocity ur with the analytical expectations. We choose√

1 − η = 0.99 and place our particles at an initial location
of r0 = 20 AU. We allow particles to drift according to the
equations:

dr
dt

= ur,

dur

dt
=

u2
ϕ

r
−

GM
r2 −

ur

tstop
,

duϕ
dt

= −
uruϕ

r
−

uϕ − vϕ
tstop

,

(B.2)

with tstop fixed with the integration time for each particle. The
drift velocities are measured when dust particles reach a dis-
tance of 10 AU. The results for different Stokes parameters are
shown in Fig. B.1. Clearly, our numerical scheme reproduces
the expected analytical solution for both small and large Stokes
numbers well.

In the second step, we test the ability of our numerical hydro-
dynamics code to transport a dust ring across the disk. We set a
dust ring with a unit surface density and a width of 10 AU located
initially between 50 AU and 60 AU. We set

√
1 − η = 0.99 and

compute the dynamics of the dust ring for different values of the
Stokes number. We keep the Stokes parameter fixed in space and
time during the integration. The results are shown in Fig. B.2
for runs with St = 10−3, St = 10−1, St = 0.5, and St = 0.9. The
black dashed lines outline the initial shape and position of the
dust ring, and the solid blue lines outline the ring after it drifted
toward the star by more than its full width. The vertical dash-
dotted lines present the analytic solutions for the edges of the
ring (see, e.g., Stoyanovskaya et al. 2017):

r3/2 = r3/2
0 −

3
√

GM∗ηt
2(St + St−1)

. (B.3)

Evidently, the position of the ring is reproduced rather well for
all Stokes numbers that are pertinent to our modeling. The edges
of the ring are smeared over several grid zones, which is consis-
tent with the accuracy of our advection scheme. We note that the
peak value of the ring increases as it drifts inward because of the
shrinking surface area of the ring.
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Fig. B.2. Inward drift of a dust ring. The black dashed lines show the
initial position of the ring, while the blue solid lines outline the posi-
tion and shape of the ring after it drifted inward by more than its full
width. The vertical dash-dotted lines present the analytic solutions for
the edges of the ring.

B.2. Sod shock tube

This test is often used to assess the ability of a numerical algo-
rithm to accurately track the position of moderate shock waves
and contact discontinuities. Initial conditions involve two dis-
continuous states along the z-axis, with a hot dense gas on the
left and cold rarified gas on the right. More specifically, we
set the pressure and density of gas at z ∈ [0, 0.5] to 1.0, while
at z ∈ [0.5, 1.0], the gas pressure is 0.1 and the gas density is
0.125. The velocity of a γ = 1.4 gas is initially zero everywhere.
The dust component has the same initial distribution as that of
gas, but the dust pressure is set to zero. The dust-to-gas ratio is
therefore equal to unity everywhere.

The analytic solution for the gas and dust mixture is only
known in the limit of short stopping times compared to the time
of shock wave propagation. We use the SPLASH code (Price
2007) to generate the analytic solution (on its stationary stage)
with a modified sound speed for the gas-dust medium cd (see
Sect. 3). In this case, the dust velocity is believed to be equal
to the gas velocity, when the density of the dust is equal to
the density of the gas multiplied by the initial dust-to-gas ratio.
We follow the terminology of Laibe & Price (2012) and intro-
duce the drag parameter K, and we define the stopping time as
tstop = ρgas/K, where ρgas = 1 is the gas density in the left half of
the shock tube. For this test problem, we also included the back
reaction of dust onto gas by adding the corresponding term to
the gas dynamics equation. Figure B.3 presents the test results
for K = 1000. The first and second rows present the resulting
gas distributions at t = 0.24, while the bottom row shows those
of dust. The numerical resolution is 200 grid zones and the arti-
ficial viscosity parameter is set to C2 = 2, implying that shocks
are spread over two grid zones.

We have found that in order to achieve a reasonable agree-
ment with the analytic solution, one needs a time step dt that
is much smaller than the stopping time. For instance, the blue
lines present the test results for dt = tstop, which obviously show
considerable deviations from the analytic solution, but the green
lines corresponding to dt = 0.05tstop match the analytic solution
much better (still, some deviations, particularly in the specific
energy, are notable). Similar results were obtained for K = 100.
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Fig. B.3. Sod shock tube problem in the limit of a short stopping time
and taking the back reaction of dust on gas into account. The top and
middle rows of panels present solutions for the gas component, while
the bottom rows show solutions for the dust component. The black solid
line shows the analytic solution, and the color lines present numerical
solutions for different values of the time step as indicated in the top left
panel.

This problem with the numerical scheme is analogous to that
highlighted in Laibe & Price (2012), but they formulated it in
terms of spatial resolution, while we think it is better to express
it in terms of the time step and stopping time. The time step is
directly linked to the numerical resolution for explicit numerical
hydrodynamics solvers, such as our own, so the two approaches
are similar.

Our test essentially demonstrates that for a medium with a
high concentration of dust particles that are strongly coupled to
the gas, the stopping time has to be resolved by at least 50 time
steps to adequately track shock waves that can be present in GI
unstable disks.

Fortunately, we have found that our scheme works much bet-
ter if the back reaction of the dust component on the gas is
neglected (as we did in the present study). Figure B.4 presents
the corresponding results for the dust-to-gas ratio of 0.01 when
the reaction of dust on the gas component has a small effect
and can be neglected. The red lines provide the analytic solution
at t = 0.24, while the filled circles are the numerical solution.
The time step in this case is similar to the stopping time. Evi-
dently, the code reproduces the analytic solution in both gas and
dust quite well. Similar results were obtained for dt = 2tstop by

A98, page 18 of 20

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731690&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731690&pdf_id=0


E. I. Vorobyov et al.: Evolution of disks with a dust component

Fig. B.4. Sod shock tube problem in the limit of a short stopping time,
but without taking the back reaction of dust on gas into account. The
top and middle rows of panels present solutions for the gas compo-
nent, while the bottom rows show solutions for the dust component.
The red lines present the analytical solution, and the filled circles are
the numerical solution for the time step similar to the stopping time.

decreasing the numerical resolution by a factor of 2. We cannot
test the scheme for even larger time steps because of the Courant
limitation on the time step, but this test already demonstrates that
if the back reaction of dust on gas can be neglected, then there
is no need to introduce another very stiff limitation on the time
step to resolve the stopping time by at least 50 time steps.

B.3. Dusty wave

The dusty wave problem tests the propagation of linear waves
in the mixture of gas and dust. Unlike the Sod shock tube
problem, where the analytical solution for the weak coupling
between gas and dust (low drag parameter K) is not known, the
dusty wave problem has analytical solutions for both weak and
strong coupling. In particular, this test allows us to estimate the
accuracy with which gas densities and gas and dust velocities
are calculated during the propagating and damping of acoustic
waves.

The initial setup consists of a sinusoidal wave of the form

lρ0 = ρ̃g + δ sin(kx), ρd,0 = ρ̃d + δ sin(kx), (B.4)

Fig. B.5. Solution of the dusty wave problem for a strong coupling
between gas and dust (K = 1000) and a dust-to-gas ratio d2g = 1 at a
time instance t = 0.5. The top panel shows the gas velocity, while the
bottom panel shows the dust velocity. The color lines present numeri-
cal solutions obtained with different time steps dt, while the black line
shows the analytical solution.

lv0 = δ sin(kx), u0 = δ sin(kx). (B.5)

We adopt isothermal gas with cs=1, ρ̃g = 1, k = 1, and δ = 0.01
throughout this section and vary K and ρ̃d. All simulations were
made with 100 grid zones on unit distance with artificial vis-
cosity parameter C2 = 2 and periodic boundary conditions. The
analytical solution is given in Laibe & Price (2011); we used the
code accompanying their paper.

Figure B.5 presents the gas and dust velocities at t = 0.5 for
K = 1000. The dust-to-gas ratio is d2g = ρ̃d/ρ̃g = 1.0. As in
Appendix B.2, we varied the time step from 0.05tstop to tstop.
Clearly, the numerical solution differs notably from the analyti-
cal one for dt = tstop, but decreasing the time step to dt = 0.05tstop
enables us to achieve a reasonably good agreement with the ana-
lytical solution for both the gas and dust velocities. We note
that for lower dust-to-gas ratios, the requirement on the time
step is less strict. Figure B.6 presents the gas and dust veloci-
ties for the same time instance t = 0.5 obtained for K = 100 and
d2g = 0.011. For dt = tstop, the agreement between the numer-
ical and analytical solution is much better than for the case of
d2g = 1.0, but the dust velocity is calculated less accurately than
the gas velocity.

Finally, we consider the dusty wave with a weak coupling
between the gas and dust, K = 1. As was demonstrated earlier,
the case of comparable dust and gas densities is most challenging
for simulations. We therefore choose d2g = 1.0 for this test
run. The time step was defined by the Courant condition with a
limiter C = 0.5. The resulting gas and dust velocities are shown
in Fig. B.7 for different time instances. Clearly, our scheme
performs well for the case of weak coupling between the gas and
dust even when back reaction is taken into account.
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Fig. B.6. Solution of the dusty wave problem for a strong coupling
between gas and dust (K = 100) and a dust-to-gas ratio d2g = 0.011 at
a time t = 0.5. The top panel shows the gas velocity, while the bottom
panel shows the dust velocity. The black dots present numerical solu-
tions obtained with the time step dt = tstop, while the red line shows the
analytical solution.

Fig. B.7. Solution of the dusty wave problem for a weak coupling
between gas and dust (K = 1) and a dust-to-gas ratio d2g = 1 at times
t = 0, 0.2, 0.5, and 2.0. The top panel shows the gas velocity, while the
bottom panel shows the dust velocity. The solid lines present numerical
solutions at different times as indicated in the legend, while the dashed
lines present the corresponding analytical solutions. The two solutions
are often almost indistinguishable.
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