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ABSTRACT

Context. Circumstellar disks of gas and dust are naturally formed from contracting pre-stellar molecular cores during the star forma-
tion process. To study various dynamical and chemical processes that take place in circumstellar disks prior to their dissipation and
transition to debris disks, the appropriate numerical models capable of studying the long-term disk chemodynamical evolution are
required.
Aims. We improve the frequently used 2D hydrodynamical model for disk evolution in the thin-disk limit by employing a better
calculation of the disk thermal balance and adding a reconstruction of the disk vertical structure. Together with the hydrodynamical
processes, the thermal evolution is of great importance since it influences the strength of gravitational instability and the chemical
evolution of the disk.
Methods. We present a new 2+1-dimensional numerical hydrodynamics model of circumstellar disk evolution, where the thin-disk
model is complemented with the procedure for calculating the vertical distributions of gas volume density and temperature in the
disk. The reconstruction of the disk vertical structure is performed at every time step via the solution of the time-dependent radiative
transfer equations coupled to the equation of the vertical hydrostatic equilibrium.
Results. We perform a detailed comparison between circumstellar disks produced with our previous 2D model and with the improved
2+1D approach. The structure and evolution of resulting disks, including the differences in temperatures, densities, disk masses, and
protostellar accretion rates, are discussed in detail.
Conclusions. The new 2+1D model yields systematically colder disks, while the in-falling parental clouds are warmer. Both effects
act to increase the strength of disk gravitational instability and, as a result, the number of gravitationally bound fragments that form
in the disk via gravitational fragmentation as compared to the purely 2D thin-disk simulations with a simplified thermal balance
calculation. The presented method has a lower time overhead than the purely 2D models and is particularly suited for the long-term
simulations of circumstellar disks including compact chemical reaction networks.
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1. Introduction

Circumstellar disks hold the key to our understanding of stel-
lar mass accumulation and planet formation. They form thanks
to the conservation of angular momentum of a collapsing cloud
core when the inspiralling material hits the centrifugal barrier
near the stellar surface before landing onto the star. As the core
collapse continues, new layers of infalling material are added to
the newborn disk at progressively larger radial distances, causing
the disk to grow in both mass and size. Numerical simulations
and observations indicate that this process starts in the Class 0
phase of stellar evolution and continue until the parental core de-
pletes or dissipates (Machida et al. 2010; Tobin et al. 2015). In
this protostellar or embedded phase, disks are usually most mas-
sive owing to continuing mass loading from the parental core and
are often prone to the development of gravitational instability
(Vorobyov & Basu 2005; Tsukamoto et al. 2013; Lomax et al.
2014; Dong et al. 2016; Mayer et al. 2016). This is also the
phase when dust growth and perhaps the first phases of planet
assembly are likely to take place (ALMA Partnership 2015).

In the subsequent T Tauri phase of stellar evolution, the disk
slowly loses its mass owing to accretion onto the host star and

expands in reaction to angular momentum redistribution within
the disk. In this phase, dust growth from small grains to planetes-
imals and planetary cores takes place, finally leading to the emer-
gence of protoplanets covered with primordial atmospheres (e.g.,
Benz et al. 2014) and basic chemical ingredients are converted
into complex (organic) species (Henning & Semenov 2013). Fi-
nally, the combined action of stellar accretion, planet formation,
disk winds, and photoevaporation leads to the dispersal of the
disk gaseous component, revealing a debris disk consisting of
solids that are left from the planet formation process.

Many of the above-mentioned phenomena during the entire
disk evolution are controlled by the radiative input from the host
star and external environment; both largely determine the tem-
perature in the disk upper layers and set the minimum tempera-
ture in its midplane. In the steady-state disk models, the radiative
input can be taken into account rather accurately using sophisti-
cated ray-tracing or Monte Carlo techniques (e.g., Woitke et al.
2009; Dullemond 2012; Akimkin et al. 2013). However, because
of the high computational costs, these models lack a dynami-
cal aspect that can be important when considering young disks
prone to gravitational instability or more evolved disks where
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planetesimals/planetary cores are subject to growth and migra-
tion. To properly consider these effects, fully dynamical mod-
els are needed; these models are usually based the equations
of hydrodynamics complemented with a module that takes the
radiative input from the stars and/or external environment into
account.

In the full 3D hydrodynamics simulations, the radiative in-
put can be taken into account by solving the equations of radia-
tion transfer, usually with simplifying assumptions such as fre-
quency integrated opacities and diffusion approximation (e.g.,
Klahr & Kley 2005; Tsukamoto et al. 2015) because the more
accurate frequency-dependent models (e.g., Kuiper et al. 2010)
are computationally expensive. Even with these simplifying as-
sumptions, a 3D model is an inconvenient tool to make a parame-
ter space study of the disk evolution for many model realizations
and many orbital periods. For this purpose, 2D thin-disk models
of disk evolution have been routinely employed (e.g., Vorobyov
2011; Zhu et al. 2012; Regály 2013; Gyergyovits et al. 2014)
thanks to their low computational costs. In these models, the
equation for thermal balance is usually complemented with cool-
ing and heating functions that take the radiative input and local
disk cooling into account. The form of these cooling and heat-
ing terms may differ slightly from study to study, but they are
essentially based on the calculated midplane and surface tem-
peratures of the disk and the optical depth from the disk surface
to the midplane. The midplane temperature is usually set equal
to the hydrodynamic temperature, the surface temperature is cal-
culated assuming the blackbody character of the incident stellar
and background radiation, and the optical depth is calculated as-
suming the vertically isothermal temperature distribution.

Although it has advantages in simplicity and low computa-
tional costs, this approach has obvious weaknesses. First, it is
not clear whether the 2D hydrodynamic temperature is indeed
representative of the disk midplane temperature. Second, this
method provides little information on the disk vertical structure,
essentially assuming that the disk is vertically isothermal, which
may not be the case. For instance, passively irradiated disks
are known to exhibit positive temperature gradients in the verti-
cal direction (e.g., Dullemond et al. 2002), while dense gaseous
clumps and spiral arms in gravitationally unstable disks may be
characterized by a more complicated vertical temperature distri-
bution (Vorobyov et al. 2014). To circumvent this difficulty, var-
ious forms of the vertical density distribution can be adopted
(Gaussian, exponential), but this procedure cannot be easily ap-
plied to the vertical temperature distribution. As a result, the
2D models have limited applicability to studying chemical reac-
tions that are known to sensitively depend on the gas temperature
(which likely varies in the vertical direction as well).

This paper presents a method that addresses the above-
mentioned weaknesses by means of coupling the gas dynam-
ics computations in the thin-disk limit and calculations of the
disk vertical structure. The gas dynamics in the disk plane is cal-
culated using hydrodynamics equations, while the disk vertical
structure is calculated using the equations of radiation transfer
and hydrostatic balance in the vertical direction. As a result, we
retrieve the full 3D density and temperature structure of the disk
at every time step, which is lacking in purely 2D models. The
presented method has lower time overhead than the purely 2D
thin-disk models and it is faster than fully 3D models since the
disk gravitational potential is found using a convolution theo-
rem (see Eq. (4)), which is not applicable to the fully 3D models
formulated in the curvilinear coordinate systems. The adopted
1D radiative transfer in the vertical direction is also much faster
than the fully 3D method. Our method is therefore well suited

for the long-term simulations of circumstellar disks. We com-
pare the disk evolution calculated using this 2+1D approach with
purely 2D simulations and briefly discuss the applicability of our
new method to calculating the chemical evolution in circumstel-
lar disks.

The paper is organized as follows. In Sect. 2, the hydrody-
namics equations in the thin-disk limit are reviewed. In Sect. 3,
we formulate the modifications made to the thin-disk model to
improve the thermal balance calculations in the thin disk. In
Sect. 4, we compare the disk evolution in the 2+1D and 2D
approaches. The model caveats and future improvements are
discussed in Sect. 5. The main conclusions are summarized in
Sect. 6. The Appendix presents details of the solution procedure
used to calculate the disk vertical structure.

2. Model equations in the thin-disk limit
The equations of mass, momentum, and energy transport de-
scribing the dynamics of circumstellar disks in the thin-disk limit
can be formulated as follows:
∂Σ

∂t
= −∇ · (Σu) , (1)

∂

∂t
(Σu) + ∇ · (Σu ⊗ u) = −∇P + Σ g + ∇ ·Π, (2)

∂e
∂t

+ ∇ · (eu) = −P(∇ · u) − Λ + Γ + (∇u) : Π, (3)

where Σ is the mass surface density, e is the internal energy per
surface area,P is the vertically integrated gas pressure calculated
via the ideal equation of state as P = (γ − 1)e with γ = 7/5,
u = vr r̂ + vφφ̂ is the velocity in the disk plane, and ∇ = r̂∂/∂r +

φ̂r−1∂/∂φ is the gradient along the planar coordinates of the disk.
The gravitational acceleration in the disk plane, g = gr r̂ + gφφ̂,
takes into account the self-gravity of the disk and the gravity of
the central protostar when formed. Disk self-gravity is found by
solving for the Poisson integral

Φ(r, φ) = −G
∫ rout

rsc

r′dr′

×

∫ 2π

0

Σ(r′, φ′)dφ′√
r′2 + r2 − 2rr′ cos(φ′ − φ)

, (4)

where rsc and rout are the radial positions of the computational in-
ner and outer boundaries. This integral is calculated using a FFT
technique which applies the 2D Fourier convolution theorem for
polar coordinates and allows for the nonperiodic boundary con-
ditions in the r-direction by effectively doubling the computation
domain in this coordinate direction and filling it with zero den-
sities (see Binney & Tremaine 1987, Sect. 2.8). Turbulent vis-
cosity is taken into account via the viscous stress tensor Π, the
expression for which can be found in Vorobyov & Basu (2010).
The kinematic viscosity needed to calculate the viscous stress
tensor is found adopting the Shakura and Sunyaev parameteri-
zation (Shakura & Sunyaev 1973), so that ν = αcsh, where cs =√
γP/Σ is the sound speed and h is the disk scale height. The

α-parameter is linked to the inferred strength of the magneto-
rotational instability (MRI) following the method that takes the
MRI active/inactive states into account as described in Bae et al.
(2014).

We use the following form for the cooling term Λ in Eq. (3)
based on the analytical solution of the radiation transfer equa-
tions in the vertical direction (Dong et al. 2016)

Λ =
4τPσT 4

mp

1 + 2τP + 3
2τRτP

, (5)
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where τR = κRΣ1/2 and τP = κPΣ1/2 are the Rosseland and
Planck optical depths to the disk midplane, κP and κR are
the Planck and Rosseland mean opacities, and Σ1/2 = Σ/2
is the gas surface density from the disk surface to the mid-
plane. Similar forms of the disk cooling term were employed
in other 1D axisymmetric and 2D thin-disk simulations (e.g.,
Kley & Crida 2008; Rice & Armitage 2009; Vorobyov & Basu
2010; Zhu et al. 2012; Bae et al. 2014) adopted from analytic
studies of the disk vertical structure by Hubeny (1990) followed
by slight modifications to the needs of numerical modeling by
Johnson & Gammie (2003).

The heating function Γ is expressed by analogy to the cooling
function as (Dong et al. 2016)

Γ =
4τPσT 4

irr

1 + 2τP + 3
2τRτP

, (6)

where Tirr is the irradiation temperature at the disk surface de-
termined by the stellar and background blackbody irradiation as

T 4
irr = T 4

bg +
Firr(r)
σ

, (7)

where Tbg is the uniform background temperature (in our model
set to the initial temperature of the natal cloud core) and Firr(r)
is the radiation flux (energy per unit time per unit surface area)
absorbed by the disk surface at radial distance r from the central
object. The latter quantity is calculated as

Firr(r) =
L∗

4πr2 cos γirr, (8)

where γirr is the incidence angle of radiation arriving at the disk
surface at radial distance r. The incidence angle is calculated us-
ing the disk surface curvature inferred from the radial profile of
the disk vertical scale height (Vorobyov & Basu 2010). The total
stellar luminosity L∗ includes contributions from the accretion
and photospheric luminosities. Similar forms of the disk heat-
ing term were employed in other 1D axisymmetric and 2D thin-
disk simulations (e.g., Rice & Armitage 2009; Zhu et al. 2012;
Bae et al. 2014).

3. Improving the thermal balance calculations:
the 2+1D approach

The numerical method described above is a fast and con-
venient tool for computing the disk evolution with high nu-
merical resolution and for many physical realizations (e.g.,
Vorobyov & Basu 2010; Zhu et al. 2012). However, this method
is essentially two-dimensional1 and, as such, it lacks the in-
formation on the disk vertical structure. Some studies (e.g.,
Dong et al. 2016) assume a Gaussian or exponential vertical den-
sity profile, but the same assumption cannot be easily made for
the vertical temperature distribution. We therefore have devel-
oped a straightforward modification to this method, which en-
ables a calculation of the density and temperature distributions
in the vertical direction concurrently with the computations of
the gas dynamics in disk plane.

1 Some modifications include a calculation of the disk vertical scale
height and the incidence angle of stellar irradiation (Vorobyov & Basu
2010).

3.1. The 2+1D approach

In this section, we formulate the modifications made to the thin-
disk model in order to improve the thermal balance calculations
in the disk. These modifications also enable a reconstruction of
the disk vertical structure, thus providing information on the disk
volumetric density and temperature distributions. The new equa-
tions of mass, momentum, and energy transport now read as
follows:

∂Σ

∂t
= −∇ · (Σu) , (9)

∂

∂t
(Σu) + ∇ · (Σu ⊗ u) = −∇P + Σ g + ∇ ·Π, (10)

∂e
∂t

+ ∇ · (eu) = −P(∇ · u) + (∇u) : Π. (11)

While Eqs. (9) and (10) remain essentially similar to their
thin-disk counterparts (apart from the effect of stellar motion),
Eqs. (11) now updates the internal energy that is only due to ad-
vection, viscous dissipation, and pressure work (adiabatic heat-
ing and cooling). To take the disk heating by the stellar and back-
ground irradiation and the disk cooling due to its own infrared
emission into account, we solve the moment equations describ-
ing the propagation of diffuse IR radiation in the vertical direc-
tion written in the Eddington approximation

cV
∂T
∂t

= κPc(E − aT 4) + S (12)

∂E
∂t
−
∂

∂z

(
c

3ρκR

∂E
∂z

)
= −ρκPc(E − aT 4), (13)

where E is the radiation energy density, T the gas temperature,
ρ the gas volume density, cV the heat capacity of the gas, c the
speed of light, a the radiation constant, z the vertical distance
from the midplane,σ the column density measured from the disk
mid-plane, and S the heating source (per unit mass) by the stellar
and interstellar UV radiation.

Equations (12) and (13) are complemented with the equa-
tion describing the local vertical hydrostatic balance in the disk
taking into account the gravity of the star as well as the local
self-gravity of the disk

R
µρ

d(ρT )
dz

= −
GM∗

r3 z − 4πGσ, (14)

where M∗ is the mass of the central star and µ = 2.33 the mean
molecular weight. We note that dσ = ρdz. We assume that the
disk vertical columns at various positions in the disk do not in-
fluence each other, so that solving for Eqs. (12)−(14) reduces to
a series of 1D problems for each grid zone on the (r, φ) compu-
tational mesh.

3.2. Method

Our method for solving Eqs. (9)−(14) consists of three steps. In
the first step, called the source step, we update the gas velocity
and internal energy (per unit surface area) due to gravity, viscos-
ity, and pressure work by solving for the following equations:

∂

∂t
(Σu) = −∇P + Σ g + ∇ ·Π, (15)

∂e
∂t

= −P(∇ · u) + (∇u) : Π. (16)
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Table 1. Model core parameters.

Model Mcore β Ω0 r0 Σ0 Rout

(M�) (%) (km s−1 pc−1) (AU) (g cm−2) (pc)
A 1.38 0.5 1.53 2057 9.05 × 10−2 0.06
B 1.38 0.27 1.13 2057 9.05 × 10−2 0.06

In the second step, called the thermal step, we compute the
change in the disk gas temperature due to radiative cool-
ing/heating and reconstruct the disk vertical structure. To do this,
we solve for the moment Eqs. (12) and (13) describing the prop-
agation of diffuse IR radiation in the vertical direction comple-
mented with Eq. (14) for the vertical hydrostatic balance. We
note that in step 2 we use the gas temperatures that are partly
updated in step 1. The detailed solution procedure for step 2 is
provided in the appendix.

In the third step, called the transport step, we take advection
of hydrodynamical quantities into account by solving for the fol-
lowing equations:

∂Σ

∂t
+ ∇ · (Σu) = 0, (17)

∂

∂t
(Σu) + ∇ · (Σu ⊗ u) = 0 (18)

∂e
∂t

+ ∇ · (eu) = 0. (19)

In this final step, we use the gas velocities and internal energies
which are consequently updated during steps 1 and 2.

To accomplish steps 1 and 3, we employ a combination of
the finite difference and finite volume methods with a time-
explicit solution procedure similar in methodology to the ZEUS
code (Stone & Norman 1992). The advection in step 3 is treated
using the third-order-accurate piecewise parabolic scheme of
Colella & Woodward (1984). A small amount of artificial vis-
cosity is added to the code to smooth out shocks over two grid
zones in both coordinate directions. The associated artificial vis-
cosity torques integrated over the disk area are negligible in com-
parison with gravitational or turbulent viscosity torques.

Equations (15), (16), and (17)−(19) are discretized in polar
coordinates (r, φ) on a numerical grid with 512× 512 grid zones.
The radial points are logarithmically spaced, while the azimuthal
points are equidistant. The innermost grid point is located at the
position of the sink cell rsc = 10 AU, and the size of the first adja-
cent cell is 0.14 AU, which corresponds to a radial resolution of
∆r = 1.4 AU at 100 AU. With this grid spacing, the Jeans length
RJ = 〈v2〉/πGΣ, where 〈v2〉 is the velocity dispersion in the disk
plane (Vorobyov 2013), is resolved by roughly 10–20 grid zones
in each coordinate direction to radial distance up to 500 AU, thus
fulfilling the Truelove criterion (Truelove et al. 1998).

Equations (12)–(14) are solved on an adaptive, non-
equidistant grid with 32 grid points. The finest grid spacing is
usually in the disk atmosphere where the largest density gradi-
ents are found. The inner and outer boundaries on the polar grid
(r, φ) allow material to freely flow out from the active computa-
tional domain, but prevent any material from flowing in. In the
vertical direction, we assume a reflecting boundary in the disk
midplane and a constant gas volume density of 103 cm−3 at the
disk upper edge.

3.3. Initial conditions

Our numerical simulations start from a pre-stellar core with the
radial profiles of column density Σ and angular velocity Ω de-
scribed as

Σ(r) =
r0Σ0√
r2 + r2

0

, (20)

Ω(r) = 2Ω0

( r0

r

)2

√

1 +

(
r
r0

)2

− 1

 , (21)

where Σ0 and Ω0 are the gas surface density and angular veloc-
ity at the center of the core. These profiles have a small near-
uniform central region of size r0 and then transition to an r−1

profile; they are representative of a wide class of observations
and theoretical models (André et al. 1993; Dapp & Basu 2009).

Our iterative solution procedure for Eqs. (12)–(14) (see the
appendix), requires us to make an initial guess for the vertical
structure of the core. We assume a constant gas temperature of
15 K and a Gaussian distribution of the gas volume density of
the form

ρ(z) = ρ0e−(z/h)2
, (22)

where ρ0 = Σ/(h
√
π). We note, however, that these initial condi-

tions are a mere initialization requirement and the vertical struc-
ture of the core quickly attains the form determined by the com-
bined action of the external heating, radiative cooling, pressure
gradients, and self-gravity of the core.

We considered several model cores, but in this paper, for the
sake of conciseness, we present only two. The initial parameters
of these models are shown in Table 1, where Mc is the initial core
mass, β the ratio of rotational energy to the magnitude of grav-
itational potential energy, and rout the initial radius of the core.
The two models are different in the amount of initial rotation,
as manifested by distinct β and Ω0. The initial parameters are
chosen so that the cores are gravitationally unstable and begin
to collapse at the onset of numerical simulations. We monitor
the gas surface density in the sink cell, and when its value ex-
ceeds a critical one for the transition from isothermal to adiabatic
evolution, we introduce a central point-mass star. In the subse-
quent evolution, 90% of the gas that crosses the inner boundary
is assumed to land on the growing star. The other 10% of the
accreted gas is assumed to be carried away with protostellar jets
The simulations continue into the embedded phase of star forma-
tion, during which a protostellar disk is formed. The simulations
are terminated in the T Tauri phase when nearly all material of
the parental core has accreted onto the resulting star-plus-disk
system.

4. Comparison of 2+1D and 2D approaches

In this section, we compare the properties of circumstellar disks
obtained using the original 2D thin-disk model and the improved
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Fig. 1. Gas surface density distributions in model A+ shown at several time instances after the onset of numerical simulations (the disk forms
at t = 0.1 Myr). The insets zoom in on several fragments in the disk. The yellow contour lines delineate regions with the Toomre Q-parameter
smaller than unity. The red dashed line is a radial cut through the disk used later to show the vertical volume density and temperature distributions.
The scale bar is in log g cm−2.

2+1D model with the purpose of understanding how an im-
proved calculation of the thermal balance in the disk can effect
its dynamical evolution. First, we compute the disk evolution
using the 2+1D models starting from the collapse of pre-stellar
cores and ending in the T Tauri stage of disk evolution when the
disk age exceeds 0.5 Myr. Then, we compute the disk evolution
in the 2D model starting from a certain time instance, usually in
the Class I phase, using the current values of Σ, e, and u taken
from the 2+1D simulations. This allows us to directly determine
the effect of different thermodynamical schemes on the disk dy-
namical evolution and avoid the possible dynamical influence of
the early collapse phase. In the following text, the models com-
puted using the 2+1D approach are distinguished with the “plus”
sign.

4.1. Models A+ and A

Figure 1 presents the disk evolution in model A+ computed us-
ing the 2+1D approach. Shown are the gas surface density snap-
shots in the inner 2000 × 2000 AU2 box taken at several times
since the onset of numerical simulations. The entire numeri-
cal domain is about 10 times larger and includes the infalling
envelope. Clearly, the disk is strongly gravitationally unstable
and multiple fragments are seen forming in the disk’s middle
and outer regions. The Toomre Q-parameter, Q = csΩ/πGΣ, is
smaller than unity in and around the fragments, as is demon-
strated by the yellow contour lines in the insets of Fig. 1. The

masses of these fragments range from about a Jupiter-mass to
the upper limit on the brown dwarf mass.

This behavior is typical for massive nonmagnetized or
weakly-magnetized disks in the embedded phase of evolution
(especially, in the Class I phase), where gravitational instabil-
ity is fueled by continuous mass loading from the infalling
parental cloud (Vorobyov & Basu 2005, 2015; Kratter et al.
2008; Tsukamoto et al. 2013; Meyer 2017). In model A+, the
embedded phase ends around t = 0.22 Myr, but fragmen-
tation continues into a later phase because the disk is mas-
sive with the disk-to-star mass ratio ∼0.2 at the end of the
embedded phase. Many fragments do not live long and mi-
grate into the star, causing FU Orionis-type luminosity outbursts
(Vorobyov & Basu 2005, 2015; Machida et al. 2011). Others are
dispersed by tidal torques (Vorobyov 2011; Zhu et al. 2012) or
are ejected from the disk via multi-body gravitational interac-
tions (Stamatellos & Whitworth 2009; Basu & Vorobyov 2012;
Vorobyov 2016). However, some fragments may survive, con-
tract to planetary sizes, and form planets or brown dwarfs at var-
ious distances from the star (Boss 1998; Nayakshin 2010, 2011;
Boley et al. 2010; Vorobyov et al. 2013; Stamatellos & Herczeg
2015a,b; Galvagni & Mayer 2014). Disk fragmentation, there-
fore, can be an important channel for the formation of planets
and brown dwarfs, either as companions to the host star or as
freely floating objects.

Figure 2 presents the disk evolution in model A computed
using the 2D approach. The gas surface density maps at the
same evolutionary times as in model A+ are shown in the
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Fig. 2. Similar to Fig. 1, but for model A.

inner 2000 × 2000 AU2 box. The 2D simulations start from t =
0.25 Myr, explaining why the disk appearance at t ≤ 0.25 Myr
is identical in models A+ and A. At later times, however, no-
table differences in the disk evolution between model A+ and
model A arise. While the disk in model A+ is strongly unsta-
ble and often harbors multiple fragments, the disk in model A
experiences only occasional fragmentation after t = 0.25 Myr.

This difference is further illustrated in Fig. 3 showing the
number of fragments in the disk Nfrag at a certain time instance
as a function of time elapsed since the onset of numerical sim-
ulations. Two conditions were used to identify the fragments in
the disk (see Vorobyov 2013, for detail): they must be pressure
supported, with a negative pressure gradient with respect to the
center of the fragment, and they must be kept together by gravity,
with the potential well being deepest at the center of the frag-
ment. Clearly, the number of fragments in the disk at a given
time instance is greater in model A+ than in model A. In ad-
dition, the duration of the disk fragmentation stage (defined as
the time span during which fragments are present in the disk) is
longer in model A+. Both suggest that the disk in model A+ is
more gravitationally unstable.

This difference in the strength of gravitational instability can
in principle be caused by distinct disk and stellar masses in mod-
els A+ and A. It is known that systems with a higher disk-to-star
mass ratio are characterized by stronger gravitational instability
because they have on average lower angular velocities and/or
higher surface densities, and are thus characterized by lower
Q-parameters. However, we find that model A+ has a slightly
lower disk mass and a slightly higher stellar mass than model A,
meaning that the mass transport rate through the disk in this
model is systematically higher than in model A. The higher mass
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Fig. 3. Number of fragments in the disk at a certain time instance as
a function of time elapsed since the onset of numerical simulations in
model A+ (top) and model A (bottom). The disk forms at t = 0.1 Myr.

transport rates in model A+ are caused by systematically higher
gravitational torques, as can be expected for disks with stronger
gravitational instability.

The stronger gravitational instability in model A+ compared
to that in model A is not related to the disk or stellar masses. It
may then be related by differences in the disk thermal structure
arising from distinct approaches to calculating the disk cooling
and heating in 2+1D and 2D approaches. To check if this is in-
deed the case, we plot in Fig. 4 the radial gas temperature profiles
in model A+ (red lines) and model A (black lines), calculated as
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Fig. 4. Azimuthally averaged radial profiles of the gas temperature in
model A+ (red and blue lines) and model A (black solid lines) taken
at several times since onset of numerical simulations. In particular, the
red lines represent the gas temperature mass-weighted over the vertical
column of gas, while the blue lines are the gas temperature in the disk
midplane. The dashed solid lines are the gas temperatures in model A
derived for the steady-state case neglecting compressional and viscous
heating. The vertical dotted lines mark the radial positions where the
disk joins the infalling envelope.

Thydro = e(γ − 1)µ/ΣR for every cell on the polar grid (r, φ) and
then arithmetically averaged over the azimuth. We note that in
the 2+1D approach, Thydro represents the gas temperature mass-
weighted over the vertical column of gas in each cell (r, φ) (see
Eq. (A.17)). For model A+, we also plot the temperature in the
disk midplane Tmp (blue lines). Four time instances since the on-
set of the 2+1D and 2D simulations are shown.

Clearly, notable differences in the radial gas temperature dis-
tributions develop with time in models A+ and A. The disk in
model A+ is systematically colder than in model A, no matter
what temperature in model A+ is considered, the hydrodynamic
(Thydro) or the midplane (Tmp). On the contrary, the inner enve-
lope is warmer in model A+ than in model A. These differences
can be understood from the following analysis. Let us first con-
sider the 2D case and for a moment neglect the heating sources
due to viscosity and compressional heating due to PdV work.
In the steady-state case, the temperature in the disk and enve-
lope will be controlled by a balance between radiative cooling Λ
(Eq. (5)) and irradiation and background heating Γ (Eq. (6)), so
that the midplane temperature can be written as

T 4
mp = T 4

bg +
Firr

σ
· (23)

This steady-state temperature is plotted in Fig. 4 with the dashed
black lines. Clearly, it is very close to the actual temperature
in model A everywhere except the very inner parts of the disk
where viscous and compressional heating become substantial
and the midplane temperature rises above the analytically pre-
dicted values.

In the 2+1D case, the midplane temperature can be expressed
in the following form if the medium is optically thick to ultravi-
olet and infrared radiation

T 4
mp =

Firr

2σ
· (24)

This expression follows from the assumption that the incident
UV flux absorbed by dust in the disk is radiated away isotrop-
ically to the upper and lower hemisphere (see Eq. (12a) in
Chiang & Goldreich 1997).

A comparison of Eqs. (23) and (24) in the regions where
the input from the background irradiation is much smaller than
from the stellar irradiation (i.e., in the disk), demonstrates that
the midplane temperature in model A+ is expected to be a factor
of 21/4 ≈ 1.2 smaller than that of model A. A similar difference
between the gas temperatures in models A+ and A is also seen in
Fig. 4. We note that the stellar luminosity in our models exhibits
short-term variations caused by the time-variable protostellar ac-
cretion (e.g., Vorobyov & Basu 2015). As a result, the disk ther-
mal state may take some time to adjust to the time-variable stel-
lar flux, meaning that the midplane temperature may not exactly
coincide with the analytical values derived in the steady-state
limit of constant stellar luminosity.

In the optically thin (to UV radiation) limit, the midplane
temperature in the 2+1D model can be written as

T 4
mp =

κF

κR

Firr

2σ
, (25)

where κF is the dust opacity in the UV band. Clearly, the mid-
plane temperature in the optically thin limit is higher than in the
optically thick limit by a factor of (κF/κR)1/4. The optically thin
limit is expected to take place in the envelope and this explains
an increase in the gas temperature in model A+ at distances
>1000 AU. In the 2D case, the gas temperature in the envelope
is controlled by the background irradiation with Tbg = 15 K. At
the same time, Eq. (25) for Firr = DT 4

ISM (only the interstellar
component, see Appendix A) yields the midplane temperature
≈14 K for κF/κR = 103, demonstrating that the midplane tem-
peratures in the two models converge to a similar value in the
outer envelope.

The consequences of this distinct radial temperature distri-
bution is twofold. First, a lower gas temperature makes the disk
in model A+ more gravitationally unstable, as was already noted
above. Second, higher infall rates from the collapsing envelope
onto the disk Ṁinfall ∼ c3

s/G, as implied by a higher gas temper-
ature in the inner envelope, drive the disk in model A+ faster to
the critical point at which the disk becomes unstable to fragmen-
tation, thus creating more fragments in the disk. In other words,
the characteristic time of mass infall onto the disk (or the disk
mass replenishment) Mdisk/Ṁinfall is shorter in model A+.

In Fig. 5 we present the 2D distributions of the gas volume
density and temperature in the (r, z) plane obtained in model A+
at t = 0.25 Myr by taking a vertical cut with a position angle of
351◦ (shown in Fig. 1 with the red dashed line). The cut is cho-
sen so that it passes through an inner spiral arm at r ≈ 48 AU and
a dense fragment with mass ≈7.8 MJup at r ≈ 207 AU (shown in
the inset of the upper middle panel in Fig. 1). Clearly, the gas
volume density is highest in the midplane and drops down to-
ward the disk atmosphere. At the same time, the temperature is
higher in the upper layers and is minimal in the disk midplane
everywhere in the disk, except for the fragments. This means that
the temperature in all parts of the disk, except for the fragments,
is controlled by the external radiation (stellar and background).
In the fragments, however, the gas is intensively heated by com-
pressional and viscous heating, while the radiative diffusion is
not fast enough to cool the inner optically thick parts of the frag-
ment down to low temperatures observed around the fragment.
We also note that the fragment at r = 207 AU is gravitationally
bound, which results in a very low disk vertical height at and
around this point. The signature of disk self-gravity is also seen
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Fig. 5. Distributions of gas volume density (top) and temperature (bot-
tom) in the (r, z) plane taken in model A+ at t = 0.25 Myr through the
radial cut with a position angle of 351◦ (red dashed line in Fig. 1).

at r = 230−250 AU covering the spiral arc in which the frag-
ment resides and where the disk vertical height is also signifi-
cantly reduced compared with the surroundings. It is therefore
possible that fragments may be deeply hidden in the disk, which
would make their detection via observations of the near-infrared
light scattered off the disk surface quite difficult, as was already
noted in Dong et al. (2016). Fully 3D simulations are needed to
determine how far from the midplane the fragments can be scat-
tered via gravitational interaction with other fragments and spiral
arms.

The 2D temperature distributions in the disk midplane and
at the surface of the disk are shown for model A+ in the up-
per left and upper right panels of Fig. 6. The bottom left panel
presents the gas hydrodynamic temperature defined as Thydro =
e(γ − 1)µ/(ΣR), in a similar fashion to that of the midplane tem-
perature in the 2D approach (see Eq. (5)). The gas surface den-
sity distribution is also shown in the bottom right panel for con-
venience. All distributions are plotted at t = 0.25 Myr.

The hydrodynamic and midplane temperatures reflect the
structure of the disk: both are rather low in the outer disk regions
and dense spiral arms, but grow in the inner disk thanks mainly
to increased stellar irradiation. Dense fragments heated by com-
pressional and viscous heating stand out as bright spots in the
disk. The hydrodynamic temperature Thydro appears to be higher
than the midplane temperature Tmp in the disk outer regions and

Fig. 6. Temperature and gas surface density distributions in model A+.
Various definitions of temperature as described in the text are shown.

in the inner envelope. This trend can also be seen in Fig. 4 and is
explained by the passively heated (by stellar and interstellar irra-
diation) nature of the outer disk and envelope: the upper gas lay-
ers are always warmer than the midplane. As a result, Thydro – a
vertical average over the gas column – becomes higher than Tmp.
In the inner disk regions, where efficient viscous and compres-
sional heating operate in the disk midplane, the situation may re-
verse and Tmp may become higher than Thydro. This trend is also
evident in Fig. 4. The surface temperature smoothly decreases
with radial distance from the star. The lack of azimuthal varia-
tions is a mere consequence of the adopted scheme for calculat-
ing the incidence angle of radiation onto the disk surface, which
uses an azimuthally averaged disk scale height to calculate γirr.
We note that the surface temperature is higher than the midplane
temperature almost everywhere in the disk except for the frag-
ments, which is discussed in more detail below.

Finally, in Fig. 7 we show the 1D vertical gas volume density
and temperature profiles taken at several positions in the radial
cut (the red dashed line in Fig. 1). These positions were chosen
so as to show the vertical distributions in various sub-structures
that may be present in the disk, such as spiral arms and frag-
ments. More specifically, the blue lines represent the vertical
profiles taken through the fragment shown in the inset of the up-
per middle panel in Fig. 1, while the cyan lines are taken through
the spiral arm. The black lines represent the vertical profiles in
a regular inter-arm disk region, and the red lines are the vertical
profiles in the inner disk. We note that we apply an adaptive grid
in the vertical direction that enables an adequate numerical res-
olution in the disk regions with strong volume density gradients
and also in the disk atmosphere.

Clearly, the fragment is characterized by the highest vol-
ume density amounting to 1012 cm−3. At the same time, the
fragment has the most compact structure with a vertical size of
just 16 AU, even though it is actually located quite far away
from the star. The midplane size of this fragment is ≈30 AU
so that the clump has an ellipsoidal shape with the semi-axis
ratio of az:ar = 1:2. This scaling is in agreement with the ra-
tio of rotational-to-thermal energy of 44%, implying that the
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Fig. 7. One-dimensional vertical cuts taken at different positions of the
disk (as indicated in the legend) and showing the vertical gas volume
density (top) and temperature (bottom) distributions.

fragment has a substantial rotational support against gravity (in
case of zero rotation, we would have expected a near-spherical
shape). The fragment is also characterized by a peculiar verti-
cal temperature distribution: its midplane temperature is higher
than the temperature in its atmosphere. There is also a depres-
sion in the temperature profile in between the disk midplane
and atmosphere. A similar irregular vertical temperature distri-
bution can also found in the inner disk regions (the red line). In
this case, however, the temperature in the atmosphere is some-
what higher than in the disk midplane. The irregular temperature
profiles are a direct consequence of the compressional and vis-
cous heating operating in the optically thick interiors of the frag-
ment and in the inner disk regions. These heating sources are
more efficient than heating due to stellar irradiation, the latter
being effectively absorbed by the atmosphere of the fragment.
This is an important phenomenon, which means that radiation
transfer codes that neglect hydrodynamic heating sources (such
as RADMC-3D) cannot accurately reproduce the temperature
structure in the fragments formed via disk gravitational fragmen-
tation and in the inner disk regions (see also Dong et al. 2016).
The other two disk elements, the spiral arm and the inter-arm re-
gion, have a vertical temperature distribution that is typical for
passively irradiated disks, though the spiral arm demonstrates
a mild increase in the gas temperature towards the midplane,
caused probably by mild shock and viscous heating.

4.2. Models B+ and B

Model B+ is distinct from model A+ in the amount of rotation
initially present in the parental collapsing core (see Table 1).
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Fig. 8. Number of fragments in the disk at a certain time instance as
a function of time elapsed since the onset of numerical simulations in
model B+ (top) and model B (bottom). The disk forms at t = 0.138 Myr.

More specifically, model B+ has a lower ratio of rotational to
gravitational energy β, which implies that model B+ forms a less
massive disk than model A+. Following the same procedure as
was discussed in the beginning of Sect. 4, we first computed the
disk evolution in model B+ and then we computed model B start-
ing from a time instance t = 0.215 Myr, which corresponds to
the Class I phase of disk evolution.

A comparison of model B+ and model B has revealed trends
that are very similar to those discussed in detail for model A+
and model A. The disk in model B+ is more gravitationally un-
stable, more prone to fragmentation, and, at the same time, is less
massive than in model B. This apparent paradox is explained by
a systematically colder disk temperatures in model B+ than in
model B. For the sake of conciseness, we do not perform an in-
depth analysis of models B+ and B in this section, but simply
present in Fig. 8 the number of fragments in the disk Nfrag at a
given time instance as a function of time elapsed since the on-
set of numerical simulations. Clearly, Nfrag is larger in model B+
than in model B. There can be as many as nine fragments in
model B+ in the early evolutionary phase, whereas in model B
the number of fragments never exceeds four. The duration of the
disk fragmentation phase is also greater in Model B+, which im-
plies a higher detection likelihood of disk fragmentation.

5. Model caveats and further improvements

In this section, we discuss the model caveats and further im-
provements of our 2+1D model.

Disk self-gravity. When reconstructing the disk vertical
structure, a local value for the gas column density σ was used in
the last term of Eq. (14). Under this approximation, the vertical
gas columns do not affect each other when solving the equation
of the vertical hydrostatic balance. This may affect the disk ver-
tical structure in the regions dominated by gravity. For instance,
a sharp drop in the disk height seen around the fragment in the
upper panel of Fig. 5 may be an artifact of the adopted approxi-
mation. In the future, the model needs to be improved by taking
the non-locality of disk gravity into account.

Vertical motions. Another assumption behind the presented
model is that vertical motions are neglected. Specifically, we as-
sume that the disk attains a vertical hydrostatic equilibrium on
timescales much shorter than the dynamical timescale. This ap-
proximation is justified if the dynamical timescale is longer than
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any other pertinent timescale, such as the timescales for diffu-
sion of radiation, propagation of sound waves, and stellar heat-
ing, which was shown to usually be the case for circumstellar
disks at distances greater than 1 AU in Vorobyov et al. (2014).
With the current approach, we cannot model interesting effects,
such as vertical oscillations and surface waves. This is, however,
the price that we are willing pay for the ability to follow the disk
evolution on much longer timescales than is currently possible
with the full 3D numerical hydrodynamics simulations.

Realistic equation of state. In the current paper, we did not
take into account that the heat capacity cV and the adiabatic in-
dex γ of gas depend on the temperature since the rotation levels
of molecular hydrogen can be excited in the considered tempera-
ture ranges. We did not include this effect since it requires a more
complicated procedure for the solution of the radiation transfer
equations. We plan to do this in follow-up papers.

There are other modifications to our radiative transfer model
which can be implemented in the future. Currently, to calculate
heating due to the stellar UV radiation, we evaluate the incidence
angle of stellar radiation γirr (see Eq. (A.4)) in each grid cell
based on the local gradients of the disk scale height, and then
average the resulting values over the azimuth (Vorobyov & Basu
2010). This procedure provides the radially varying UV heating
due to the global disk flaring, but does not allow us to prop-
erly model the local effects, such as shadows in the disk caused
by spiral arms. Our attempt to calculate the azimuthally varying
γirr, including the effect of the shadows, resulted in overheating
of the disk surfaces directly exposed to stellar radiation. Allow-
ing for the diffusion of the thermal IR emission in the equato-
rial plane may alleviate this problem. Finally, we now work on
implementing the FARGO mechanism for advection of hydrody-
namical quantities (Masset 2000), which will allow us to ease the
restrictive time step limitations and move the sink cell boundary
closer to the star, hopefully to the sub-AU region.

6. Conclusions

In this paper, we have improved the frequently used thin-disk
models of circumstellar disk evolution and presented the method
that includes a better calculation of the disk thermal balance and
a reconstruction of the disk vertical structure. Our method is
based on the solution of the hydrodynamics equations describing
the gas dynamics in the plane of the disk, complemented with so-
lution of the radiation transfer and hydrostatic balance equations
describing the disk vertical structure. We performed a detailed
comparison of this 2+1D method with the purely 2D thin-disk
models of disk evolution. Our findings can be summarized as
follows:

– Improved 2+1D models yield systematically colder disks,
while the infalling parental clouds in the embedded evolu-
tionary phase are warmer. Both effects act to increase the
strength of disk gravitational instability in 2+1D models as
compared to purely 2D simulations.

– Disk gravitational fragmentation is more efficient and the
duration of the disk fragmentation phase is longer in
2+1D models, which implies an increased likelihood for de-
tecting disk fragmentation in protostellar disks.

– The outer disk regions are mostly characterized by a pos-
itive vertical temperature gradient, typical for passive cir-
cumstellar disks heated mainly by stellar and background
irradiation. The inner disk regions usually have a more com-
plex, non-regular vertical temperature distribution having lo-
cal peaks in the midplane and in the atmosphere separated by

a mild depression. The temperature increase in the midplane
is caused by efficient viscous and compressional heating op-
erating in the inner disk.

– Fragments forming in the disk via gravitational fragmenta-
tion are also characterized by a double-peaked vertical tem-
perature profile, but unlike the inner disk regions, the center
of the fragment is warmer than its atmosphere. This means
that the hydrodynamical heating sources (compression, vis-
cosity) are more efficient than stellar irradiation heating,
implying that radiation transfer codes that neglect the hy-
drodynamical heating sources cannot accurately compute the
temperature in the fragment interiors (see also Dong et al.
2016).

– Fragments are significantly more compact than the surround-
ing disk, which could make their detection with the scattered
light techniques difficult unless significant excursions away
from the disk midplane are feasible.

A detailed procedure for solving the radiation transfer and
hydrostatic balance equations in the vertical direction is pre-
sented in the appendix. The improved 2+1D method yield a full
3D structure of the disk, namely its volumetric density and tem-
perature distributions, with a modest increase in the net compu-
tational time with respect to purely 2D models. It also applies
an adaptive mesh in the vertical direction, enabling good reso-
lution in the disk regions with strong density gradients and in
the disk atmosphere. This makes it possible to couple our 2+1D
model with compact chemical reaction networks to follow the
long-term chemodynamical evolution of young protostellar disks
starting from the gravitational collapse of parental cloud cores.
The details of this method will be presented in the upcoming
paper.
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Appendix A: The thermal and step
the reconstruction of the disk vertical structure

The thermal step is placed in our algorithm between the source
step (Eqs. (15) and (16)) and the transport step (Eqs. (17)−(19)).
While the source and transport steps deal with 2D quantities in-
tegrated over the disk vertical column (such as the gas surface
density Σ, the vertically integrated pressure P, and the internal
energy per surface area e) and are therefore defined on the (r, φ)
polar mesh, the thermal step deals with 3D quantities (such as
the gas temperature T , the gas volume density ρ, the radiative en-
ergy E, and the vertical column density from the disk midplane
σ) defined on the (z, r, φ) cylindrical mesh. The initial values for
all quantities (2D and 3D) are provided by the initial setup as
described in Sect. 3.3.

Here, we describe the algorithm for solving Eqs. (12)
and (13), which take the disk radiative cooling/heating into ac-
count. This algorithm also includes the reconstruction of the disk
vertical structure assuming the vertical hydrostatic equilibrium
described by Eq. (14). Our method is a time-dependent modi-
fication to the steady-state models presented in Akimkin et al.
(2012) and Vorobyov et al. (2014). The method for solving the
source and transport steps are described in Sect. 3.2 and in more
detail in Vorobyov & Basu (2010).

First, we note that the internal energy per surface area e is
updated in the source step, due to the P(∇ · u) work and viscous
heating. This may affect the gas temperature distribution in the
disk and should be taken into account before the thermal step is
commenced. We assume that the generated (or consumed) heat
in the source step is evenly redistributed over the disk vertical
column so that the gas temperature in each element of the verti-
cal column can be updated as

T ∗ = T n e∗

en , (A.1)

where index n refers to the quantities at the beginning of the
source step and the asterix refers to the quantities after the source
step. The updated gas temperature T ∗ is also used in the thermal
step.

In the second step, we compute the heating function S
(Eq. (12)) due to sources other than the thermal radiation of
the medium. We note that the dimension of S by definition is
[erg s−1 g−1]. In our model, these sources include the UV radia-
tion from the central star S star and the interstellar UV radiation
S bg,

S = S star + S bg, (A.2)

where S star is defined as

S star = 4πκstar
P Jstar, (A.3)

where κstar
P is the mean Planck opacity averaged over the stellar

spectrum.
To compute S star, we need to know the distribution of the

mean intensity of UV radiation Jstar. We calculate Jstar taking
into account the absorption of the UV radiation by the disk as

Jstar = J0
star exp (−τstar/µ), (A.4)

where J0
star is the UV intensity at the surface of the disk, τstar

is optical depth calculated from the surface of the disk, and
µ = cos γirr the cosine of the incidence angle of stellar radia-
tion arriving at the disk surface with respect to the normal (see

Vorobyov & Basu 2010, for details). The optical depth as a func-
tion of the current column density σ is defined as

τstar = κstar
P

(
Σ

2
− σ

)
, (A.5)

where σ is measured from the disk mid-plane. The intensity J0
star

at the disk surface can be found as

J0
star =

1
4π

L∗
4πr2 · (A.6)

Here, L∗ is the total stellar luminosity, which includes contribu-
tions from photoshperic luminosity Lph and accretion luminosity
Laccr, and r the radial distance to the star. The accretion lumi-
nosity is calculated as Lacc = GM∗Ṁ/(2R∗) using information
on the current stellar mass M∗, stellar radius R∗, and accretion
rate onto the star Ṁ. The photospheric luminosity and stellar ra-
dius are found from the Lyon stellar evolution code coupled to
the main hydrodynamics code as described in Vorobyov & Basu
(2015) and Baraffe et al. (2017).

The background heating function S bg is calculated by anal-
ogy to Eq. (A.4), but with a fixed value of µ = 0.5. As a boundary
condition for the interstellar radiation, we use the relation

J0
bg = D

caT 4
bg

4π
, (A.7)

where c is the speed of light and a the radiative constant. The
temperature and dilution of the interstellar radiation are Tbg

and D; in our simulations we adopt 10 000 K and 8 × 10−15,
respectively.

In the third step, we calculate the change in the gas temper-
ature T and radiative energy E in a given vertical column of the
disk due to heating by the stellar UV and background radiation
and cooling by the disk infrared emission. The thermal evolution
of the vertical column is described by the system of radiative
transfer Eqs. (12) and (13).

This system is a set of moment equations for diffuse IR ra-
diation derived under the Eddington approximation. We solve
Eqs. (12) and (13) numerically to find T and E after one hy-
drodynamical time step ∆t using the implicit finite-difference
scheme

cV
T − T ∗

∆t
= κPc(E − aT 4) + S (A.8)

E − En

∆t
− Λ̂E = −ρnκPc(E − aT 4), (A.9)

where T ∗ is the gas temperature updated after the source step
(see Eq. (A.1)), and En and ρn the radiation energy and gas vol-
ume density taken from the previous time step. In the discretized
equations, we use the following convention: index i refers to the
left-hand side grid interface and index i + 1/2 to the grid center.
In the above system, all quantities are defined at the grid center
i + 1/2 (the index omitted for simplicity) and Λ̂E denotes the
finite-difference approximation to the diffusion term:

Λ̂E =
1

∆zi+1/2

(
c

3ρn
i+1κR,i+1

Ei+3/2 − Ei+1/2

∆zi+1

−
c

3ρn
i κR,i

Ei+1/2 − Ei−1/2

∆zi

)
, (A.10)

where

∆zi = zi+1/2 − zi−1/2

∆zi+1/2 = zi+1 − zi

ρn
i κR,i =

1
2

(
ρn

i−1/2κR.i−1/2 + ρn
i+1/2κR,i+1/2

)
.
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The above nonlinear system is solved with the iterative New-
ton method. Namely, we approximate T 4 as (T k)4

(
4T
T k − 3

)
using

the first two terms of the Taylor expansion series, where super-
script k refers to the previous iterative step and produce a system
of linear equations for E1/2, ..., EM−1/2 with a tridiagonal matrix,
where M is the number of grid cells in the vertical direction.
This tridiagonal system is solved with the forward and back sub-
stitution method (the Thomas algorithm). The obtained values
of energies are back substituted in Eq. (A.8) to derive the tem-
peratures and both quantities are then used for the next Newton
iteration as T k+1 and Ek+1 until convergence is achieved. The so-
lution is then set to T = T k+1 and E = Ek+1.

The boundary conditions for Eqs. (A.8) and (A.9) are the
zero energy gradient near the mid-plane and following relation
between the diffusion flux and radiation energy at the disk sur-
face

−
c

3ρnκR

∂E
∂z

∣∣∣∣∣
zM

=
c
2

(
E − aT 4

cmb

)
, (A.11)

where Tcmb = 2.73 K. This condition is derived under the as-
sumption that the incoming and outgoing radiation is isotropic
over the upper and lower hemispheres. We note that the pre-
sented method is conceptually similar to that developed for
the calculation of the pre-stellar core thermal evolution in
Pavlyuchenkov et al. (2015).

The next stage of the algorithm is to recover the hydrostatic
equilibrium along the vertical direction using the updated tem-
peratures. Equation (14) describing the vertical hydrostatic equi-
librium can be written as

dz
dσ

=
1
ρ

(A.12)

R
µ

d(ρT )
dσ

= −
GM∗

r3 z − 4πGσ, (A.13)

where r is the radial distance to a given vertical column of gas,
G the gravitational constant, and σ the gas column density mea-
sured from the disk mid-plane. We note that T is known from
the previous step. Equation (A.13) accounts for the gravity of
the central star and disk self-gravity in the plane-parallel limit.
The boundary conditions for this system have the form

z(0) = 0 (A.14)
ρ(σM) = ρext, (A.15)

where ρext is the gas volume density at the disk surface. In
our models, ρext corresponds to a hydrogen number density of
103 cm−3.

The solution of the system (A.12)−(A.13) with the corre-
sponding boundary conditions can be found using an implicit
scheme similar to that used when computing the internal struc-
ture of the stars. We linearize the right-hand side of (A.12) as

1
ρ
≈

1
ρk −

1
(ρk)2 (ρ − ρk), (A.16)

which transforms the initial system into a linear system of ordi-
nary differential equations. The implicit finite-difference approx-
imation of this equation generates a system of algebraic linear
equations with a tridiagonal matrix whose solution can be eas-
ily found using the forward and backward substitution method.
The resulting solution is used to form a new approximation, and
iterations over k are carried out until convergence is achieved
(usually after a few iterations).

At the last step of the algorithm, we calculate the updated
thermal energy e per unit area by summing up the thermal ener-
gies over the vertical grid

e = 2cV

M∑
k=0

Ti+1/2 (σi+1 − σi) , (A.17)

where a factor of 2 accounts for the fact that we adopted an equa-
torial symmetry with resect to the disk midplane. This value will
also be used in the transport step.

Finally, we note that the transport step updates the values
of Σ and e (see Eqs. (17) and (19)), which in turn affects the
volumetric distributions of the gas temperature T and volume
density ρ. To take these changes into account, we assume that
the mass and thermal energy that are carried with the flow are
evenly redistributed over the vertical cells so that the updated
distributions of T and ρ can be calculated as

ρn+1 = ρ
Σn+1

Σ
, (A.18)

T n+1 = T
Σ

Σn+1

en+1

e
, (A.19)

where T , ρ, and Σ are the values of the gas temperature, its vol-
ume, and surface densities before the transport step. This com-
pletes one cycle of integration and the updated values T n+1, ρn+1,
and Σn+1 are used at the next time step.

Since the method is fully implicit, it is in general very sta-
ble. However, in a very few cases the Newton procedure may
not converge for some values of the time step. In this case, we
divide the hydrodynamic time step into several subcycles, which
usually solves the problem. In the limit of large time steps, the
method yields a steady-state solution similar to that obtained by
the steady-state model described in Vorobyov et al. (2014).

The presented algorithm was carefully tested and compared
with other methods. In particular, we benchmark our steady-
state solutions (in the limit of large time steps) with the results
of 1+1D code “diskstruct”2 developed by C. Dullemond and
discussed in Dullemond et al. (2002). The results of this com-
parison are shown in Fig. A.1. The vertical temperature distri-
butions calculated with our method are very similar to the re-
sults obtained with the approximate method “vertrt”, which also
adopted gray opacities for the dust thermal radiation included
in the “diskstruct” package. The deviation of our solution from
the results produced by the more accurate method “fullrt”, which
takes into account the frequency and angular dependence of ra-
diative transfer, is notable near the equatorial plane. However, we
consider these differences to be acceptable for our simulations.

To illustrate the time-dependent aspect of the radiative trans-
fer model used in the thermal step, we show in Fig. A.2 the evo-
lution of the temperature distribution at r = 10 AU where the
density distribution is manually fixed. For the parameters of the
considered vertical column of gas, the relaxation to a steady-state
solution is achieved within a few years (about an order of magni-
tude faster than the dynamical time at r = 10 AU) starting from
either a warmed-up disk (with an initial uniform temperature of
T = 400 K) or from a cooled-down disk (with a uniform temper-
ature of T = 4 K). This relaxation time is in agreement with the
characteristic thermal time estimated in Vorobyov et al. (2014).
As expected, the relaxation to the steady-state solution is faster
in the upper layers of the disk where the gas volume density is
lower.
2 http://www.ita.uni-heidelberg.de/~dullemond/
software/diskstruct/index.shtml
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Fig. A.1. Vertical temperature distributions of a protoplanetary disk cal-
culated with our method and with the “diskstruct” package written by
C. Dullemond. More specifically, the results from the “distruct-fullrt”
method with the full treatment of the frequency and angular depen-
dent radiative transfer are shown with the thick blue lines. The thick
red curves represent the results from the approximate “diskstruct-vertrt”
method, which adopts gray opacities for the dust thermal radiation. The
temperature distributions calculated with our method are shown with the
thin black lines. The presented vertical distributions are calculated for
three radial positions in the disk, namely for R = 1 AU (top), R = 10 AU
(middle), and R = 100 AU (bottom) for an optically thick protoplanetary
disk illuminated by a star with Teff = 6000 K.

While producing the temperature distributions in Fig. A.2,
the gas volume density distribution was manually fixed. When
the density is allowed to evolve together with the temperature,
then the density distribution develops as shown in Fig. A.3.
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Fig. A.2. Evolution of the gas temperature distribution at r = 10 AU in
a toy model of the protoplanetary disk. The density structure is fixed.
The initial temperature distribution is uniform with T = 4 K (first case)
and T = 400 K (second case). The initial distributions are shown in
shades of blue, the steady-state solution is shown in red. The arrows
illustrate the evolution of the gas temperature profiles with time. The
corresponding time in seconds is shown in the color legend.
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Fig. A.3. Evolution of the gas volume density distribution at r = 10 AU
in a model of protoplanetary disk. The initial temperature distribution
is uniform with T = 4 K (first case) and T = 400 K (second case). The
initial density distributions are shown in shades of blue, the steady-state
solution is shown in red. The arrows illustrate the evolution of the gas
density profiles with time. The corresponding time in seconds is shown
in the color legend.

We see that at low and high initial temperatures the disk vertical
height is low and high, respectively. In the steady-state profile
near z = 1.2 AU a slight change in the slope can be seen that
corresponds to the change in the temperature profile.
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