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ABSTRACT

Aims. Motivated by recent observational and numerical studies suggesting that collapsing protostellar cores may be replenished from
the local environment, we explore the evolution of protostellar cores submerged in the external counter-rotating environment. These
models predict the formation of counter-rotating disks with a deep gap in the gas surface density separating the inner disk (corotating
with the star) and the outer counter-rotating disk. The properties of these gaps are compared to those of planet-bearing gaps that form
in disks hosting giant planets.
Methods. We employ numerical hydrodynamics simulations of collapsing cores that are replenished from the local counter-rotating
environment and numerical hydrodynamics simulations of isolated disks hosting giant planets to derive the properties of the gaps that
form in both cases.
Results. Our numerical simulations demonstrate that counter-rotating disks can form for a wide range of mass and angular momentum
available in the local environment. The gap that separates both disks has a substantial depletion factor, can be located at a distance
from ten to over a hundred AU from the star, and can propagate inward with velocity ranging from 1 AU Myr−1 to >100 AU Myr−1.
Unlike our previous conclusion, the gap can therefore be a long-lived phenomenon that is, in some case, comparable to the lifetime of
the disk itself. For a proper choice of the planetary mass, the viscous α-parameter and disk mass, the planet-bearing gaps and gaps in
counter-rotating disks may show a remarkable similarity in the gas density profile and depletion factor, which may complicate their
observational differentiation.
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1. Introduction

In the classic scenario for star formation, stars form from the
gravitational collapse of dense molecular cloud cores described
by isolated Bonnor-Ebert-type spheres or truncated singular
isothermal spheres (Larson 1969; Shu 1977). If the core has non-
zero angular momentum, then a fraction of its mass lands onto
a circumstellar disk formed owing to conservation of the net an-
gular momentum of the core. In this scenario, stars and disks
accrete material from isolated parental cores until the latter are
depleted or dispersed via feedback from stellar irradiation and
outflows.

However, there is growing evidence that forming young stel-
lar objects may be constantly or periodically replenished from
the external environment. A sizeable fraction of cores appear to
form not in isolation, but within dense and rich large-scale struc-
tures. For instance, recent Herschel and IRAM images show that
dense cores often lie along sinuous filaments, like beads in a
string (André et al. 2014; Tafalla & Hacar 2015), implying an
interesting possibility for prolonged accretion from these fila-
mentary structures.

This assumption seems to be supported by recent analytical,
numerical, and observational studies. For instance, the usually
referred mean age of 2–3 Myr for circumstellar disks (Mamajek
2009) might in fact be considerably underestimated as a result of
selection criteria that focus on the densest parts of stellar clusters
(most prone to disk erosion) and leave out field stars (Pfalzner
et al. 2014). There is also a wide spread in the disk lifetimes;

some objects lose their disks very early (≤1.0 Myr), whereas
other objects retain their disks for up to 10 Myr and even longer
(Beccari et al. 2010; Williams & Crida 2011; De Marchi et al.
2013). An implication for these findings is that the disk disper-
sal mechanisms, such as UV/X-ray photoevaporation, may act
longer than was previously thought or circumstellar disks may be
replenished from the external environment. Numerical hydrody-
namic simulations of clustered star formation support the notion
of prolonged accretion, showing that protostellar cores can be
repeatedly replenished in response to fluctuating conditions in
the surrounding environment (Maschberger et al. 2014; Padoan
et al. 2014).

Motivated by these findings, we recently presented a numer-
ical hydrodynamics study of collapsing cores embedded in an
external environment with different magnitude and direction of
rotation (Vorobyov et al. 2015). Our major conclusion was that
the evolution of stars and circumstellar disks in isolated and non-
isolated systems may be drastically different. The most curious
case was found for the model with opposite spin directions of
the core and external environment. This peculiar system demon-
strated the formation of counter-rotating disks separated by a
deep gap in the gas surface density, resembling somewhat in
morphology the AB Aurigae system also seemingly showing the
signs of prolonged accretion and counter-rotating disk structures
(Tang et al. 2012).

The formation scenario for counter-rotating disks requires
a source of material, which i) has a spin direction that is
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opposite (in general) that of the disk and ii) can accrete onto
the disk sometime after its formation. The star-forming turbu-
lent and chaotic environment may naturally provide such an
environment. Indeed, numerical simulations of clustered star
formation demonstrate that protostellar cores can be regularly
replenished in response to the fluctuating conditions in the lo-
cal environment (Maschberger et al. 2014) and the angular mo-
mentum vector of the accreted material can undergo significant
changes both in magnitude and direction with respect to the star
(Bate et al. 2010; Fielding et al. 2015), often leading to the for-
mation of misaligned star-disk systems in some cases exceed-
ing 90◦. Recent observations of wide-separation (>1000 AU)
binary/multiple systems in the Perseus star-forming region re-
vealed that the distribution of the outflow directions is consis-
tent with preferentially random or even antialigned distributions,
implying that these systems possibly formed in environments
where the distribution of angular momentum is complex and dis-
ordered, rather than corotating or aligned (Lee et al. 2016).

Moreover, the recent numerical magnetohydrodynamics
simulations of the core collapse and disk formation, taking the
Hall effect into account, suggest that the outer envelope can
change its rotation direction to the opposite direction with re-
spect to the disk if the rotation vector of the parental core and
magnetic field are antiparallel (Tsukamoto et al. 2015). If the
outer envelope remains gravitationally bound to the system, its
subsequent infall onto the disk can serve as a source of external
counter-rotating material.

In this paper, we perform an in-depth analysis of counter-
rotating disks formed as a result of gravitational collapse of ro-
tating cores embedded in an external environment with the op-
posite direction of rotation. We compare the properties of gaps
in counter-rotating disks with those typically found in planet-
bearing disks. The paper is organized as follows. In Sect. 2, the
model description and initial conditions are provided. The for-
mation of counter-rotating disks is described in Sect. 3 and the
properties of the gaps are provided in Sect. 4. A comparison with
planet-bearing gaps is performed in Sect. 5 and our main conclu-
sions are summarized in Sect. 6.

2. Model description and initial conditions

Our numerical model for the formation and evolution of counter-
rotating disks is described in detail in Vorobyov et al. (2015) and
is briefly reviewed here. Numerical hydrodynamics simulations
start from a collapsing prestellar core embedded into an exter-
nal low-density environment. Because the density of the core is
much higher than that of the external environment, the free-fall
time of the core is short and the dynamics is initially dominated
by contraction of the core and formation of the star plus disk
system from the core material.

Once the mass reservoir in the core has depleted, the ma-
terial from the external environment starts falling onto the star
plus disk system and the subsequent evolution is determined by
the mass and angular momentum in the external environment. In
this paper, we consider a special case of external environment
counter-rotating with respect to the spin of the prestellar core.

The main physical processes taken into account when mod-
eling the formation and evolution of counter-rotating disks in-
clude viscous and shock heating, irradiation by the forming star,
background irradiation (10 K), radiative cooling from the disk
surface, and disk self-gravity. In particular, the stellar irradiation
is taken into account by calculating the amount of stellar flux
intercepted by the disk/envelope. To do this, the incidence an-
gle of stellar radiation is calculated from the shape of the disk

surface using the local vertical scale height and the assumption
of vertical hydrostatic balance. The possible self-shading of the
disk/envelope is not taken into account. The viscosity is calcu-
lated using the α-parameterization of Shakura & Sunyaev (1973)
with the α-value varying between 10−3 and 10−2. With these as-
sumptions, the viscous and irradiation heating scale as r−3 and
r−1.75, respectively, so that the former usually dominates in the
inner several tens of AU (if α is not too low), but the latter always
dominates in the outer disk1.

The pertinent equations of mass, momentum, and energy
transport, and the solution procedure are described in Vorobyov
et al. (2015). The forming star is described by the Lyon stel-
lar evolution code (Baraffe et al. 2012), while the formation and
long-term evolution of the circumstellar disk are described using
numerical hydrodynamics simulations in the thin-disk limit. To
avoid time steps that are too small, we introduce a “sink cell”
at rsc = 6.0 AU and impose a free outflow boundary condition
so that the matter is allowed to flow out of the computational
domain, but is prevented from flowing in.

For the initial setup, we take a prestellar core submerged into
a constant-density external environment. For the initial surface
density profile of the core, we adopt a simplified form of a verti-
cally integrated Bonnor-Ebert sphere (Dapp & Basu 2009). The
resulting initial distribution of the gas surface density takes the
following form:

Σ =

⎧⎪⎪⎨⎪⎪⎩
r0Σ0√
r2+r2

0

for r ≤ Rcore,

Σext otherwise,

where Σ0 is the gas surface density at the center of the core,
r0 =

√
Ac2

s/πGΣ0 is the radius of the central plateau of the core,
Rcore is the radius of the core, and cs is the initial sound speed.
We assume a fixed shape of our cores with Rcore/r0 = 6. The
radius of the core Rcore is a free parameter. Once it is fixed, the
size of the central plateau r0 is also fixed and Σ0 can be found
using the above expression for r0, thus completing the procedure
for generating the gas surface density distribution of individual
cores. Further, the density of the external environment Σext is set
equal to the gas surface density at the outer edge of the core

(Σext = r0Σ0/
√

R2
core + r2

0). In all models, the value of A is set to
1.2 and the initial temperature is set to 10 K.

To study the formation of counter-rotating disks, we adopt
the following form for the initial radial profile of angular veloc-
ity Ω:

Ω =
2
π
Ωcore tan−1

(
C

Rcore − r
Rcore + r

)
, (1)

where Ωcore is the angular velocity of the core and C = 25
the dimensionless factor defining the sharpness of the transi-
tion zone between the core and counter-rotating external envi-
ronment. When r is much smaller than Rcore,Ω approachesΩcore.

We considered three models, the initial configurations for
which are shown in Fig. 1. In particular, the left panels present
the radial distribution of Σ, while the right panels show Ω as
a function of radial distance. In all models, the core rotates
counter-clockwise, while the external environment rotates clock-
wise. The parameters of every model are provided in Table 1. All

1 The irradiation flux is determined as Firr = cos γirrL∗/(4πr2), where
L∗ is the stellar luminosity and the cosine of the incidence angle is pro-
portional to H/r, where H is the vertical scale height. We assume here
that H/r ∝ r0.25, but the slope in our models may vary somewhat around
this value.
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Fig. 1. Initial distribution of the gas surface density (left) and angular
velocity (right) in three considered models.

three models have similar integrated properties of the core, albeit
with some variations in the radial density profiles2, but differ sig-
nificantly in the characteristics of the external environment. In
particular, they have different masses Mext and different ratios
of rotational to gravitational energy βext in the external environ-
ment, while the corresponding quantities in the core (Mcore and
βcore) are the same. In our previous study (Vorobyov et al. 2015),
the mass of the core was lower than that contained in the exter-
nal environment. In this study, we consider the opposite initial
configuration in which the mass contained in the core is higher
than that in the external environment. We note that both the core
and external environment are initially out of virial equilibrium
(|Egrav| > 2Eth +Erot) and both undergo gravitational contraction
after the start of the numerical simulations.

3. Formation of counter-rotating disks

The formation of counter-rotating disks is demonstrated in Fig. 2
showing the time evolution of the gas surface density in model 1.
We zoom in onto the inner 2000 × 2000 AU2 box where the
most interesting effects take place, but the total computational
domain is 20 000 × 20 000 AU2 in size. The time elapsed since
the formation of the central protostar is shown in each panel.

The initial configuration is gravitationally unstable and col-
lapses to form a central protostar. However, because the gas
density is higher in the core than in the external environment,
the former collapses faster than the latter. After several thou-
sands years, a centrifugally balanced disk forms and grows in
size and mass owing to the continuing inflow of matter from
the collapsing core. In this early phase, the disk corotates with
the core. However, at t ≈ 0.14 Myr the disk growth halts
when the mass reservoir in the collapsing core exhausts and the
material from the collapsing counter-rotating external environ-
ment starts falling onto the disk outer regions. This infalling
material mixes with the disk, reducing its net angular momen-
tum and causing the disk to shrink by a factor of several by
t = 0.2 Myr. We note that the infall of external material is not
modeled by adding material at certain radii with a given mass
and angular momentum rate, but rather through self-consistent
numerical hydrodynamics simulations covering both the disk
and external environment contracting gravitationally toward the
disk on the same numerical mesh.

To better illustrate the effect of infall from the external en-
vironment, we show in Fig. 3 the angular velocity by absolute
value |Ω| (upper panel) and the gas surface density Σ (lower
panel) as a function of radial distance from the star. Both |Ω|
and Σ are azimuthally averaged. Four time instances are denoted

2 We note that the evolution of the core depends weakly on the gas
surface density and angular velocity profiles, but is very sensitive to the
integrated quantities such as its mass (Vorobyov 2012).

by lines of different color as shown in the legend. In the upper
panel, the solid/dashed lines represent positive/negative values
of Ω. The inner regions rotate counter-clockwise (positive Ω),
while the outer regions rotate clockwise (negative Ω). A sharp
drop in |Ω|manifests a radial position where the counter-rotating
external environment mixes with the inner core/disk, resulting in
a net decrease in |Ω|.

The upper panel in Fig. 3 demonstrates that the interface
between the external environment (dashed lines) and the inner
material constituting the core and the disk (solid lines) moves
radially inward with time. At t ≤ 0.14 Myr, the position of
the interface is still far away from the disk outer edge, which
is schematically indicated in the lower panel with filled circles.
As a result, the disk grows in size during the early evolution
thanks to continuing accretion of corotating material from the
collapsing core. However, once the core has almost completely
accreted onto the disk plus star system, the material from the
counter-rotating external environment starts landing onto and
mixing with the disk. The disk shrinks in size as indicated by
the arrow in the lower panel. During t = 0.19−0.20 Myr, the size
of the disk is determined by the current position of the interface
between the disk and the infalling external material.

The subsequent evolution of the system (t ≥ 0.21 Myr) re-
veals an interesting effect: The formation of two counter-rotating
disks separated by a deep gap. This phenomenon, first noted in
Vorobyov et al. (2015), is illustrated in Fig. 4 showing the gas
velocity field (yellow arrows) superimposed on the gas surface
density map at t = 0.24 Myr. The inner disk rotates counter-
clockwise, in the same direction as the initial rotation of the
parental core, while the outer disk rotates clockwise, in the same
direction as the external environment. As time passes, the outer
disk gradually grows in size owing to infall of the external ma-
terial, while the inner disk shrinks owing to accretion onto the
star.

The formation of the outer counter-rotating disk, which can
be understood if we consider the centrifugal radius of matter ini-
tially located at a distance r from the star3, is written as

Rcf =
J2(r)

GM(r)
, (2)

where J(r) = r2|Ω| is the specific angular momentum at a ra-
dial distance r, G is the gravitational constant, and M(r) it the
mass enclosed within distance r. The centrifugal radius provides
a distance at which the gravitational acceleration acting on a
contracting layer of rotating material becomes balanced by its
centrifugal acceleration, preventing the layer from further con-
traction. The radial distribution of Rcf in model 1 at the onset of
gravitational contraction (t = 0) is shown in Fig. 5. The centrifu-
gal radius gradually increases with distance and reaches a local
maximum at the location of the core outer edge (shown by the
arrow). In the transition zone between the core and the counter-
rotating external environment, the angular velocity changes its
sign and the centrifugal radius drops to a negligible value. In
the counter-rotating external environment, the angular velocity
increases again, although with the opposite sign. As a conse-
quence, the centrifugal radius of the external environment in-
creases and attains values that are even larger than those of the
core.
3 This equation is strictly valid for a point-mass object. However, our
initial surface density distribution is similar to that of Mestel’s disk,
Σ ∝ r−1, the gravitational potential of which is similar to that of the
point-mass object with the point mass substituted by the mass located
within a given radius r (Binney & Tremaine 1987). That is why Eq. (2)
is also applicable to our models.
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Table 1. Model parameters.

Model Mcore βcore Mext βext Ωcore r0 Σ0 Rcore

M
 % M
 % km s−1 pc−1 AU g cm−2 pc

1 1.0 0.7 0.65 1.36 0.56 3430 3.6 × 10−2 0.07
2 1.0 0.7 0.33 1.36 0.61 2915 4.3 × 10−2 0.068
3 1.0 0.7 0.65 0.7 0.56 3430 3.6 × 10−2 0.07

Notes. Mcore and Mext are the initial masses of the prestellar core and external environment; βcore and βext the ratios of rotational to gravitational
energy in the core and external environment, Ωcore the angular velocity of the core; r0 and Σ0 the size of the central plateau and the central surface
density of the core; and Rcore the radius of the core.

Fig. 2. Gas surface density in the inner 2000 × 2000 AU2 box in model 1. The time elapsed since the formation of the protostar (located in the
coordinate center) is shown in each panel. The scale bar is in g cm−2 (log10 units).

The disk evolution reflects the behavior of the centrifugal
radius shown in Fig. 5. First, the disk grows in size owing to ac-
cretion of material with a gradually increasing Rcf (the value of
which serves as a proxy for the disk radius). The centrifugal ra-
dius of the material at the core outer edge is ≈200 AU. The disk
at this stage is somewhat larger owing to gravitational interaction
between spiral arms and fragments, which leads to gravitational
scattering of the fragments and effective increase of the disk ra-
dius. The growth of the disk is followed by tentative contraction
when the low-Rcf material from the transition zone lands onto
the disk and starts extracting disk’s angular momentum. Finally,
the outer counter-rotating disk begins to form when the infalling
external material characterized by large Rcf hits the centrifugal

barrier just outside the heavily reduced inner disk. The transition
region between the inner and outer disks, where rotation changes
its direction and the matter lacks centrifugal support, is mani-
fested by a density gap clearly visible in Fig. 2 at t ≥ 0.21 Myr.

Now, we briefly discuss the formation of counter-rotating
disks separated by a gap in the other two models we consider.
Figure 6 demonstrates the formation of the counter-rotating
disks in model 2, which is characterized by a somewhat smaller
available mass reservoir in the external environment than in
model 1 (see Table 1). The time elapsed since the forma-
tion of the star (located in the coordinate center) is shown in
each panel. The evolution in model 2 follows a path similar to
that of model 1: the initial growth of the disk is followed by
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Fig. 3. Top: azimuthally-averaged angular velocity |Ω| (by absolute
value). The positive/negative values are plotted by solid/dashed lines. A
sharp drop in |Ω| indicates the radial position where the rotation changes
its direction from counter-clockwise to clockwise. Bottom: azimuthally-
averaged gas surface density. The solid circles indicate the position of
the outer disk edge. The arrow shows the direction in which the disk
shrinks thanks to the infall of external counter-rotating material.

its contraction and formation of a counter-rotating outer disk.
However, the outer disk and gap are initially much more eccen-
tric than in model 1.

To illustrate this peculiar feature of model 2, we calculated
the eccentricity as

e(r, φ) =
√

1 + 2h(r, φ)c(r, φ)2. (3)

In Eq. (3), c(r, φ) and h(r, φ) stand for

c(r, φ) = x(r, φ)vy(r, φ) − y(r, φ)vx(r, φ), (4)

and

h(r, φ) =
vx(r, φ)2 + vy(r, φ)2

2
− 1√

x(r, φ)2 + y(r, φ)2
, (5)

where vx(r, φ), vy(r, φ), and x(r, φ), y(r, φ) are the Cartesian ve-
locity components and coordinates at the polar grid with coordi-
nates (r, φ).

Figure 7 presents the map and azimuthally averaged profile
of the eccentricity in model 2 for the inner 400 × 400 AU2 box.
The snapshot is taken at t = 0.53 Myr. Evidently, the eccentricity
is excited in the vicinity of the gap edges with a peak value of
epeak ≈ 0.6 at the gap inner wall. We emphasize that the disk ec-
centricity profile is similar to that of a giant-planet-bearing disk

-500 -400 -300 -200 -100 0 100 200 300 400 500

Radial distance (AU)

-500

-400

-300

-200

-100

0

100

200

300

400

500

R
ad

ia
l d

is
ta

nc
e 

(A
U

)

Fig. 4. Gas velocity field superimposed on the gas surface density map
in model 1 at t = 0.24 Myr. Two counter-rotating disks are clearly
visible.
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Fig. 5. Centrifugal radius Rcf as a function of radial distance in model 1
at the onset of gravitational contraction (t = 0). The arrow indicates the
position of the core outer boundary.

(i.e., the eccentricity has a peak inside the gap), although the ec-
centricity of the giant-planet-bearing disk has a somewhat lower
amplitude at the peak value, epeak ≈ 0.3 (Regaly et al. 2010).
Because of the high disk eccentricity, we expect strong kinemat-
ical signatures similar to those of young binaries predicted by
Regaly et al. (2011).

We propose the following explanation for the formation of
such an eccentric outer disk. The initial distribution of gas in the
external environment is homogeneous and axisymmetric, so the
initial conditions cannot be responsible for the resulting eccen-
tricity. We think that high eccentricity of the gap and its edges
is caused by the gravitational perturbation from the strongly
asymmetric structure of the inner disk. Indeed, the early evo-
lution of the inner disk is characterized by the presence of ex-
tended asymmetric spiral arcs. There is also a massive fragment
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Fig. 6. Similar to Fig. 2 only for model 2. The yellow circle outlines the fragment ejected from the inner disk.

(≈25−30 MJup) outlined by the yellow circle in the bottom-right
corner of Fig. 6 at t = 0.23 Myr, which is likely ejected from
the disk via multibody interaction with other fragments. These
strong azimuthal distortions may cause strong perturbations to
the infalling external material, which results in the development
of the eccentric gap and outer disk. We note that the inner disks
in model 1 and model 3 (see below) also exhibit a spiral struc-
ture and fragmentation before the formation of the outer disk, but
nevertheless we do not see strong eccentricity developing in the
outer disk during the evolution. This might be because models 1
and 3 have a factor of 2 greater mass reservoir in the external
environment and, as a consequence, more massive outer disks,
which are less prone to the eccentricity excitation than those of
model 2. In any case, it appears that the outcome depends sig-
nificantly on the available mass in the external environment, and
on particular inner disk configuration, including the presence or
absence of extended spiral arcs and ejected fragments, and there-
fore cannot be predicted a priori.

Figure 6 indicates that the eccentricity of the disk and the
gap in model 2 seems to diminish with time. This is likely due to
the absence of continuing gravitational perturbation caused by
smooth density distribution of the inner disk. Indeed, the distri-
bution of gas in the inner disk (after the formation of the outer
disk) becomes nearly axisymmetric, likely as a result of disk
contraction and associated heating, thus reducing the source of

gravitational perturbation. As a result, the disk eccentricity is
gradually damped by the viscous evolution.

Finally, in Fig. 8 we show the formation of counter-rotating
disks in model 3. This model is characterized by a factor of
2 smaller value of β in the external environment than in model 1.
Nevertheless, the overall evolution is similar to model 1, ex-
cept that the gap appears to be somewhat narrower. We con-
clude that the gap can form for a wide range of physical param-
eters (masses, angular momenta) in the external environment.
Another interesting phenomenon that can be seen in Fig. 8 is
gravitational fragmentation in the outer counter-rotating disk at
t = 0.3−0.4 Myr. A similar effect was also reported in Vorobyov
et al. (2015). Although the fragment does not survive for long
(which might be caused by insufficient numerical resolution),
this phenomenon presents an interesting gateway for the forma-
tion of giant planets counter-rotating with respect to the host star.

4. Properties of the gaps

In this section, we consider the properties of the gaps formed in
our models. Figure 9 presents the azimuthally averaged profiles
of the gas surface density in three models. Only the late evolu-
tion times are considered. A deep gap in the gas surface density
is evident between the inner and outer disks. In order to estimate
the depth of the gap, we plot a tangent line connecting the ra-
dial density profiles in the inner and outer disks shown with the
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Fig. 7. Eccentricity distribution in the disk (upper panel) and the az-
imuthally averaged eccentricity (lower panel) for model 2 calculated
using Eqs. (3)–(5) at 0.24 Myr. The red line in the lower panel provides
the azimuthally averaged gas surface density profile.

Table 2. Properties of the gaps

Model Rgap (AU) �Σgap(%) ugap (AU Myr−1)

1 72 0.14 83
2 115 0.39 <1.0
3 50 0.18 150

Notes. Rgap is the mean position of the gap, �Σgap the gap depletion in
per cent, and ugap the mean propagating velocity.

dotted lines. The depletion of the gap is then calculated as the ra-
tio between the gas surface density given by the model and that
given by the tangent, both calculated at the position of the gap’s
deepest point. The arrow illustrates the gap depletion for model 1
at t = 0.4 Myr. Table 2 provides the time-averaged properties of
the gaps.

Evidently, the gaps are characterized by a wide range of ra-
dial positions, which may vary from a few tens of AU to more
than a hundred AU. In particular, model 2 is characterized by
the gap position that is roughly a factor of two further out than
in the other two models. This is related to the fact that model 2

has the smallest external mass reservoir. The depletion factor
�Σgap in all models is rather strong, indicating a drop in the gas
surface density by at least two orders of magnitude at the po-
sition of the gap. The strongest contrast between the models is
found for the gap propagation velocity, which may vary from
rather fast propagation in model 3 (AU Myr−1) to very slow in-
ward motion in model 2 (<1 AU Myr−1). Model 3 is character-
ized by the smallest angular momentum in the external environ-
ment (β = 0.7). In our previous work (Vorobyov et al. 2015), we
showed that infall of external material with low angular momen-
tum exerts a strong negative torque onto the inner disk, which
can lead to significant contraction or even complete dissipation
of the inner disk. A similar effect takes place in model 3, pro-
moting the contraction of the inner disk and increasing the gap
propagation speed. Interestingly, model 2 with the slowest gap
propagation velocity is also characterized by the greatest asym-
metry in both the gap and outer disk shape. This implies a causal
link between the shape of the gap and its propagation velocity.

In Vorobyov et al. (2015) it was claimed that the gaps formed
in counter-rotating disks are short-lived (several tens of kyr),
transient phenomena. This conclusion was based on the behavior
of the gap in one model only. Our numerical simulations with a
wider parameter space show that the gaps may be a long-lived
phenomenon, lasting for at least several hundred of kyr and per-
haps even longer.

Finally, we note that the slopes of the tangents in Fig. 9 lie
in the αd = −[1.6:1.8] range, which is only slightly steeper than
expected for young self-gravitating disks, αd = −1.5 (Vorobyov
2010; Rice et al. 2010), and significantly steeper than expected
for more evolved, viscosity-dominated protoplanetary disks with
the kinematic viscosity proportional to the disk radius, αd =
−1.0 (Lynden-Bell & Pringle 1974; Williams & Crida 2011).

5. Comparison with planet-bearing gaps

In this section, we compare the properties of gaps formed in
counter-rotating disks with those that can be found in disks with
embedded planets. A massive planet clears the disk around it to
form a gap through gravitational interaction if its Hill radius is
greater than the local disk scale height and the timescale for the
gap opening is shorter than the timescale for viscous diffusion
to close it (Kley & Nelson 2012). To model the gap opening via
planet-disk interaction, we employ the two-dimensional, numer-
ical hydrodynamics simulations using the FARGO-ADSG code
and also its GPU based version (Masset 2000). The FARGO
code solves the vertically integrated continuity and Navier–
Stokes equations numerically in the cylindrical coordinate sys-
tem with the locally isothermal approximation.

In the local isothermal approximation, the radial tempera-
ture profile is T (r) ∼ r−1, and the equation of state of the gas is
P(r, φ) = cs(r)2Σ(r, φ), which depends only on the density and
the local sound speed cs(r) = Ω(r)H(r), where H(r) is the local
pressure scale height. Both cs(r) and H(r) are constant in time
because of the assumption of local isothermality. The disk scale
height is proportional to radius, H(r) = Ar, where A is the disk
aspect ratio, which is set to A = 0.05 for all models.

The 2D computational domain extends from 6 AU to
1000 AU, consisting of NR = 256 logarithmically distributed
radial, and Nφ = 512 equidistant azimuthal grid cells. For the
smoothing length of the planet gravitational potential, we choose
εH(Rp), where Rp is the position of the planet and ε = 0.6, which
is appropriate for 2D simulations (Kley et al. 2012). The gas
is allowed to flow out from the computational domain, i.e., an
open boundary condition is applied at both the inner and outer
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Fig. 8. Similar to Fig. 2, only for model 3.

domain boundaries. The disk viscosity is approximated by the
α-prescription of Shakura & Sunyaev (1973). The magnitude of
viscosity is varied in the range of 10−3 ≤ α ≤ 10−2. For compar-
ison, in the counter-rotating disk simulations, the viscous α was
set to a constant value of 5 × 10−3. We use a coordinate frame
that corotates with the planet.

The initial density profile of the gas disk is Σ(R, φ) = Σ0R−1.5,
where Σ0 is chosen so as to set the disk mass to ∼0.03 M
 in-
side the computational domain. For this disk mass, the Toomre
Q-parameter (Toomre 1964) is greater than three throughout the
disk (Q  8.5 at the planetary distance). These high values of
Q-parameter make it possible to neglect the disk’s self-gravity.
We also consider models for which the disk mass is increased
to ∼0.3 M
. For those high-disk-mass models, the disk’s self-
gravity is taken into account.

The planet is set on an orbit at 80 AU from the central star (to
match the position of the gap in the counter-rotating disk model)
and the planet is not allowed to migrate or accrete gas, i.e., it
remains on a circular orbit with constant mass. The planet-to-
star mass ratio are q = 0.9 × 10−3, 2.35 × 10−3, and 4.7 × 10−3

corresponding to 1, 2.5, and 5 Jupiter mass planets for a 1.0
solar mass central star. The planetary mass and disk viscos-
ity were varied in a wide range to produce different configu-
rations of the planet-bearing gaps. Our purpose is to determine
the characteristic signatures of the gaps in counter-rotating disks,
which can help to distinguish them from the planet-bearing gaps.

For a planet-bearing disk model, the density snapshots were
taken at the end of the simulation (after 1000 orbits of the gi-
ant planet corresponding to 0.07 Myr after the planet was in-
serted to the disk), when a quasi -steady disk state had been
achieved. In each row of Figs. 10–13, the first and second panels
show the gas surface density distribution in the counter-rotating
disk and planet-bearing disk models. The third panel shows the
azimuthally averaged radial density profiles (black for counter-
rotating, blue for planet-bearing disk models). For the counter-
rotating disk model, we use the data for model 1 at t = 0.6 Myr.
The densities in non-self-gravitating, planet-bearing models are
scaled such that the density profile at the inner disk (R < 80 AU)
fits to that of the counter-rotating disk model. We note that as
long as the disk self-gravity and planetary migration are not
taken into account, the density can be scaled as Σ0 can be can-
celed out from the continuity and Navier–Stokes equations.

Figure 10 shows the comparison of gaps in counter-rotating
and planet-bearing disk models for the viscous α = 5× 10−3 and
the planet mass of Mp = 5 (upper row) and Mp = 2.5 (lower
row) Jupiters. The surface density in the planet-bearing model is
scaled up by a factor of 50 to match the peak density in the inner
disk of the counter-rotating disk model4. We found that the lower
Mp = 2.5 MJup model seems to match the azimuthally averaged

4 We scale Σ with a sole purpose of facilitating the comparison be-
tween the radial density profiles in different models. This scaling pro-
cedure is not meant for comparing the absolute values of the gas surface
density, but only their ratios, such as the gap depletion factor.
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Fig. 9. Azimuthally averaged profiles of the gas surface density in mod-
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time is counted from the formation of the central star.

density profiles in the inner disk slightly better, including the
density contrast between the inner disk edge and the center of the
gap, whereas both planet-bearing models are characterized by a
smaller contrast between the peak densities in the inner and outer
disks. As a consequence, the depletion in planet-bearing gaps is
significantly stronger than in the case of counter-rotating disks,
0.02% for 5 MJup and 0.08% for 2.5 MJup planet as compared to
0.14% in model 1.

Figure 11 shows the effect of viscosity on the gas density dis-
tribution in planet-bearing disk models with different values of
α = 10−2 (upper row) and α = 10−3 (lower row). The planet
mass in both cases is set to Mp = 2.5 MJup. For both models, we
applied a density scaling factor of 130 and 20 to match the inner
density profile of the counter-rotating disk model. The model
with a higher α = 10−2 demonstrates a significantly shallower
gap (the depletion factor is 0.37%) than its low-α counterpart

(0.002%) thanks to an increased viscous transport. As a conse-
quence, the gap depth in the α = 10−2 model fits better to that of
the counter-rotating disk model.

To better match the density depletion inside the gap, the plan-
etary mass was further decreased to 1.0 MJup. The corresponding
density distribution is shown in Fig. 12. For this case, the proper
density scaling for the planet-bearing model was found to be 20.
With 1.0 MJup for the planetary mass and 10−3 for the viscous α,
the inner disk density profiles, including the depletion factor in
the gap (0.24%), are found to match those of the counter-rotating
disk model 1 better than in previously considered planet-bearing
models. Nevertheless, the gap in the planet-bearing disk model
still has sharper edges than those of the counter-rotating disk
model.

It appears that for the case of giant planet-bearing, non-self-
gravitating disks, the gaps tend to be deeper than those of the
counter-rotating disks unless the viscosity is high (α = 10−2)
or the planetary mass is low (∼1 MJup). The density peak at the
gap outer edge in the planet-bearing model is always higher,
implying that a pressure maximum is much better expressed
in planet-bearing disks than in counter-rotating disks. In addi-
tion, the slope of the planet-bearing disk is usually shallower
than that of the counter-rotating disk. For instance, the planet-
bearing disks in Fig. 10 and in the top panel of Fig. 11 have
slopes that lie in the αd = −[0.9:1.15] limits. The planet-bearing
disks in the bottom panel of Fig. 11 and in Fig. 12 have some-
what steeper slopes, αd ≈ −1.5, but still shallower than those
of the counter-rotating disks, αd = −[1.6:1.8]. Taking a steeper
initial gas surface density distribution in the planet-bearing disk
could help to bring the resulting slope in a better agreement with
the counter-rotating disk, but we note that we have already taken
a rather steep initial surface density profile, Σ r−1.5, and increas-
ing it even further may be difficult to justify.

In order to check the effect of disk self-gravity, additional
simulations were done using ten times higher disk mass (simi-
lar to that of the counter-rotating model 1) than previously con-
sidered. We note that in simulations with disk self-gravity the
density scaling was not applied. For the viscous α and planetary
mass, we chose 10−3 and 1.0 MJup, respectively. As one can see
in Fig. 13, the density profile of the inner and outer disks match
those of the counter-rotating disk model rather well. Significant
differences are only found for the innermost disk region, where
the surface density of the planet-bearing disk has a notable ex-
cess, and also at the center of the gap, where the planet-bearing
disk has weaker depletion (2.5%). The difference in the inner-
most disk is likely related to different boundary conditions ap-
plied in the two numerical codes.

We note that the gap depth and structure of its edges are
expected to be altered if the gas thermodynamic is taken into
account. Moreover, as the presented snapshots were taken after
1000 planetary orbits, the orbital migration should also be taken
into account presumably affecting the shape and radial position
of the gap.

6. Conclusions

We numerically studied the formation and physical properties of
circumstellar disks formed as a result of gravitational collapse
of dense cloud cores submerged into a low-density external en-
vironment counter-rotating with respect to the core. We found
that counter-rotating disks form during the evolution for a wide
parameter space of masses and rotation rates in the external en-
vironment, with the inner disk corotating with the star and the
outer disk counter-rotating with respect to both the inner disk
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Fig. 10. Comparison of gap formation in counter-rotating disks and a giant plant bearing protoplanetary disk assuming 5 MJup (upper row) and
2.5 MJup (lower row) planetary mass, respectively. Left panel: density distribution in the counter-rotating disk models at 0.6 Myr. Middle panel:
density distribution in giant planet bearing disk model after 1000 orbits of the giant planet. Right panel: comparison of azimuthally averaged
density profiles for both models. The density is scaled up by 50 in planet-bearing disk model to match the density profiles in the inner disk.
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Fig. 11. Same as Fig. 10, but the viscosity is changed to α = 10−2 (upper row) and α = 10−3 (lower row). The applied density scalings are 130
(upper row) and 20 (lower row).
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Fig. 12. Same as the lower panel of Fig. 11 (α = 10−3), but the planetary mass is decreased further to 1MJup. The applied density scaling is 20.
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Fig. 13. Same as in Fig. 12, but in models where the disk mass is assumed to be ten times higher, therefore self-gravity is taken into account. No
density scaling is applied.

and the star. The inner and outer disks are separated by a deep
gap in the gas surface density. The gap shape, its depth and ec-
centricity may vary depending on the model. The gap often mi-
grates inward but the migration speeds are vastly different, rang-
ing from more than a hundred AU per Myr to less than one AU
per Myr, suggesting that this structure may be a long-lived phe-
nomenon, which is comparable to the lifetime of the disk itself.

We compared the properties of the gap in counter-rotating
disks with those formed as a result of a gap opening in a
giant-planet-bearing disk. We found that the shape of the in-
ner disk in both gap-opening mechanisms can be rather similar.
Moreover, given a proper choice of the planetary mass and vis-
cous α-parameter (1.0 MJup and 10−3, respectively) and consid-
ering relatively massive (self-gravitating) disks, the shape and
depth of the gap in planet-bearing models can match those of
counter-rotating disks rather well. Therefore, the shape of the
gas surface density profile in massive planet-bearing disks may
resemble that of counter-rotating disks, which makes it difficult
to distinguish between the two gap-forming mechanisms based
solely on the gas density distribution. This implies that planet-
bearing gaps may be confused with gaps formed in counter-
rotating disks and gas kinematic studies are necessary to dis-
tinguish between the two possible gap-forming mechanisms.
Another potentially observable effect that can help to distinguish
between the two gaps is the emission due to accretion onto the
protoplanet. The Hα emission that was recently reported for the
LkCa planetary system (Sallum et al. 2015) presents one possi-
ble example. The differences in the shape of the spiral pattern
and the pitch angle may also be used to determine the origin of
the gap, but this requires further investigation and synthetic im-
age modeling as was carried out in, e.g., Juhász et al. (2015) and
Dong et al. (2016).

At the same time, gaps in counter-rotating disks are as a
rule distinct from those formed in planet-bearing models with
low-mass (non-self-gravitating) disks. The latter often possess
a deeper gap with sharper edges, implying stronger pressure
bumps in the vicinity of the gap, which are subject to dust accu-
mulation (see, e.g., Pinilla et al. 2012). Nevertheless, we expect
that the peculiar density profile in the outer counter-rotating disk
can also facilitate the dust growth in these regions, which can
lead to an interesting perspective of forming a large population
of planetesimals and solid protoplanetary cores counter-rotating
to the star and inner disk.
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