
Complex Organic Molecules as Companions of Forming Stars

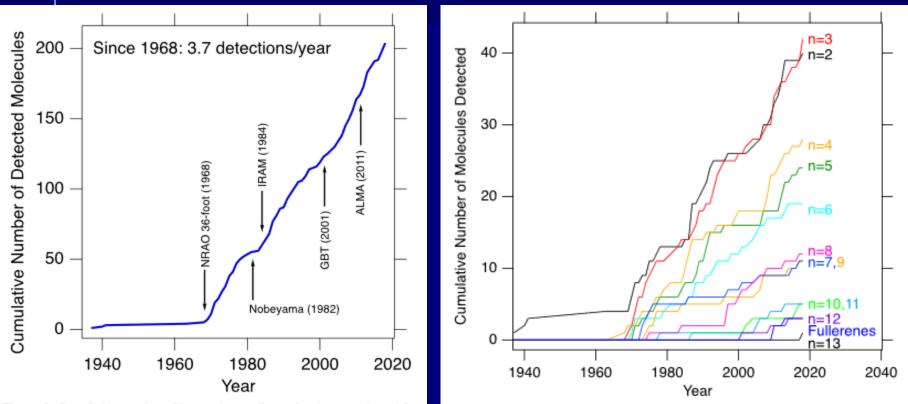
Anton Vasyunin

Astrochemistry Lab, Ural Federal University The Max Planck Partner Group

10.09.2019, XXI Mendeleev Symposium, Saint Petersburg

Matter cycle in Galaxy

Abundances of "metals" in diffuse ISM:


Element	n(X)/n(H)
Ν	7.60e-5
Ο	2.56e-4
С	1.20e-4
S	1.50e-5
Si	1.70e-6
Fe	2.00e-7
Na	2.00e-7
Mg	2.40e-6
Cl	1.80e-7
Р	1.17e-7
F	1.80e-8

Fractional abundances of molecules cannot exceed ~ 1e-4 (except for H_2 and HeH+)

Interstellar and circumstellar molecules

```
Two atoms
AIF AICI C2 CH CH+ CN CO CO+ CP CS CSi HCl H2 KCl NH NO NS NaCl OH PN SO SO+ SiN
SiO SiS HF SH
Three atoms
C<sub>3</sub> C<sub>2</sub>H C<sub>2</sub>O C<sub>2</sub>S CH<sub>2</sub> HCN HCO HCO<sup>+</sup> HCS<sup>+</sup> HOC<sup>+</sup> H<sub>2</sub>O H<sub>2</sub>S HNC HNO MgCN MgNC N<sub>2</sub>H<sup>+</sup>
N_2O NaCN OCS SO<sub>2</sub> c-SiC<sub>2</sub> CO<sub>2</sub> NH<sub>2</sub> H<sub>3</sub><sup>+</sup> SiCN
Four atoms
c-C<sub>3</sub>H I-C<sub>3</sub>H C<sub>3</sub>N C<sub>3</sub>O C<sub>3</sub>S C<sub>2</sub>H<sub>2</sub> CH<sub>2</sub>D<sup>+</sup>? HCCN HCNH<sup>+</sup> HNCO HNCS HOCO<sup>+</sup> H<sub>2</sub>CO H<sub>2</sub>CN
H_2CS H_3O^+ NH_3 SiC_3
Five atoms
C<sub>5</sub> C<sub>4</sub>H C<sub>4</sub>Si I-C<sub>3</sub>H<sub>2</sub> c-C<sub>3</sub>H<sub>2</sub> CH<sub>2</sub>CN CH<sub>4</sub> HC<sub>3</sub>N HC<sub>2</sub>NC HCOOH H<sub>2</sub>CHN H<sub>2</sub>C<sub>2</sub>O H<sub>2</sub>NCN HNC<sub>3</sub>
SiH_4 H_2COH^+
Six atoms
C<sub>5</sub>H C<sub>5</sub>O C<sub>2</sub>H<sub>4</sub> CH<sub>3</sub>CN CH<sub>3</sub>NC CH<sub>3</sub>OH CH<sub>3</sub>SH HC<sub>3</sub>NH + HC<sub>2</sub>CHO HCONH<sub>2</sub> I-H<sub>2</sub>C<sub>4</sub> C<sub>5</sub>N
Seven atoms
C_6H CH_2CHCN CH_3C_2H HC_5N HCOCH_3 NH_2CH_3 C-C_2H_4O CH_2CHOH C_7^-(?)
Eight atoms
CH<sub>3</sub>C<sub>3</sub>N HCOOCH<sub>3</sub> CH<sub>3</sub>COOH C<sub>7</sub>H H<sub>2</sub>C<sub>6</sub> CH<sub>2</sub>OHCHO
Nine atoms
CH_3C_4H CH_3CH_2CN (CH_3)_2O CH_3CH_2OH HC_7N C_8H
Ten atoms
CH_{3}C_{5}N? (CH_{3})_{2}CO
Eleven atoms HC<sub>9</sub>N
Thirteen atoms c-C<sub>6</sub>H<sub>5</sub>CN
```

Discovery of space molecules since 1930s

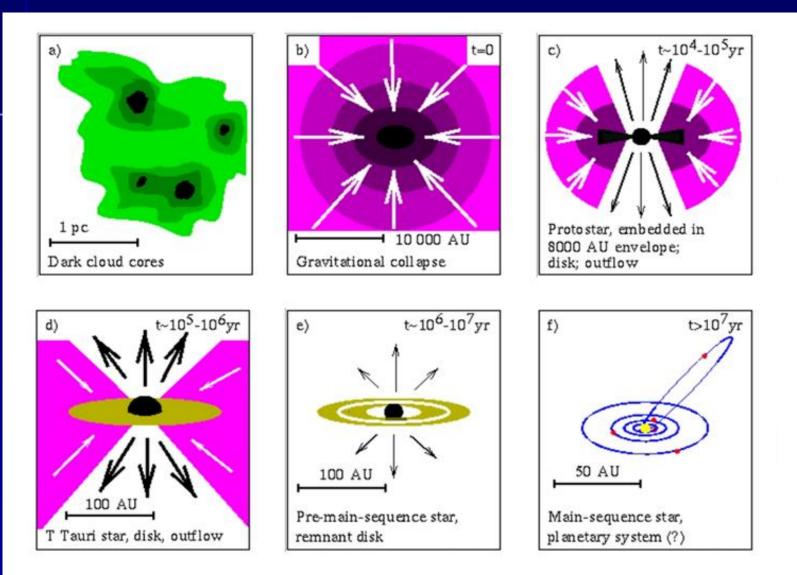
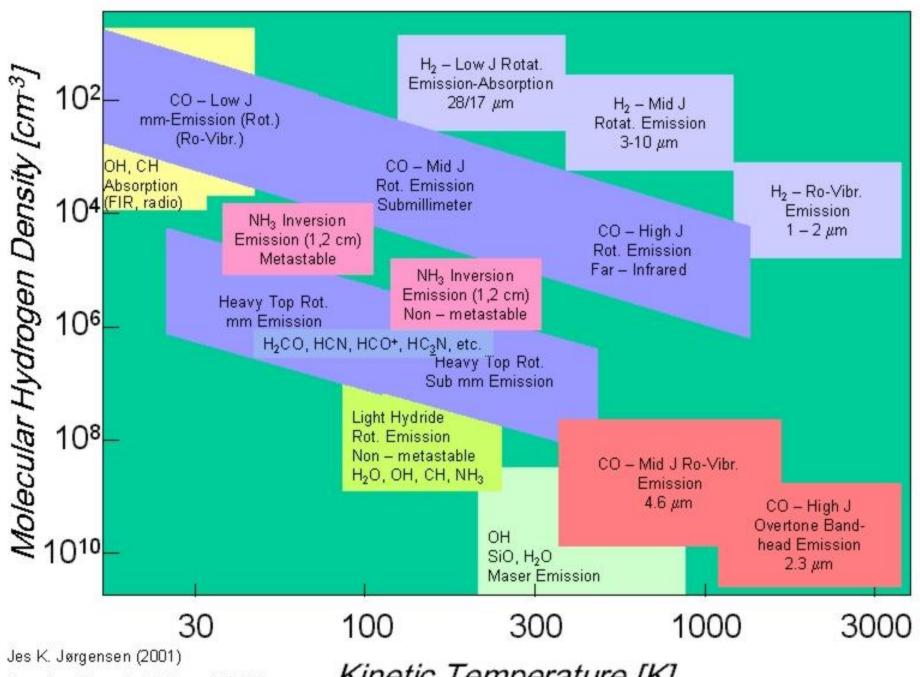


Figure 1. Cumulative number of known interstellar molecules over time. After the birth of molecular radio astronomy in the 1960s, there have been on average 3.7 new detections per year ($R^2 = 0.991$ for a linear fit beginning in 1968). The commissioning dates of several major contributing facilities are noted with arrows.


Figure 2. Cumulative number of known interstellar molecules with 2–13 atoms, as well as fullerene molecules, as a function of time. The traces are color-coded by number of atoms, and labeled on the right.

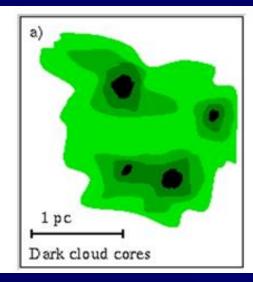
McGuire 2018

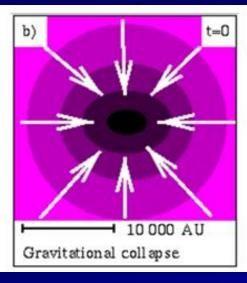
Sketch of a low-mass star formation

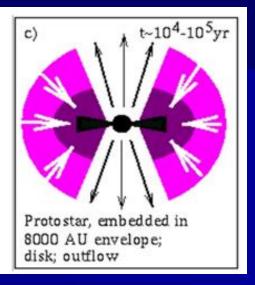
M.Hogerheijde 1998, after Shu et al. 1987

Based on figure by R. Genzel (1991)

Kinetic Temperature [K]

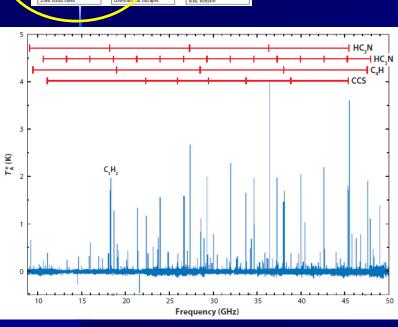

Complex organic molecules (COMs)


Species	Name	Source	Species	Name	Source
Hydrocarbons			N-Containing		
C_2H_4	Ethene	circ	CH ₃ CN	Acetonitrile	cc, hc, of
HC ₄ H	Butadiyne	circ	CH ₃ NC	Methylisocyanide	hc
H_2C_4	Butatrienylidene	circ, cc, lc	CH ₂ CNH	Keteneimine	hc
C5H	Pentadiynyl	circ, cc	HC ₃ NH ⁺	Prot. cyanoacetylene	сс
CH ₃ C ₂ H	Propyne	cc, lc	C5N	Cyanobutadiynyl	circ, cc
C ₆ H	Hexatriynyl	circ, cc, lc	HC ₄ N	Cyanopropynylidene	circ
C_6H^-	Hexatriynyl ion	circ, cc, lc	CH ₃ NH ₂	Methylamine	hc, gc
H_2C_6	Hexapentaenylidene	circ, cc, lc	C ₂ H ₃ CN	Vinylcyanide	cc, hc
HC ₆ H	Triacetylene	circ	HC5N	Cyanodiacetylene	circ, cc
C ₇ H	Heptatriynyl	circ, cc	CH ₃ C ₃ N	Methylcyanoacetylene	сс
CH ₃ C ₄ H	Methyldiacetylene	сс	CH ₂ CCHCN	Cyanoallene	сс
CH ₃ CHCH ₂	Propylene	сс	NH ₂ CH ₂ CN	Aminoacetonitrile	hc
C_8H	Octatetraynyl	circ, cc	HC ₇ N	Cyanotriacetylene	circ, cc
C_8H^-	Octatetraynyl ion	circ, cc	C ₂ H ₅ CN	Propionitrile	hc
CH ₃ C ₆ H	Methyltriacetylene	сс	CH ₃ C ₅ N	Methylcyanodiacetylene	сс
C ₆ H ₆	Benzene	circ	HC ₉ N	Cyanotetraacetylene	circ, cc
O-Containing			C ₃ H ₇ CN	N-propyl cyanide	hc
CH ₃ OH	Methanol	cc, hc, gc, of	HC ₁₁ N	Cyanopentaacetylene	circ, cc
HC ₂ CHO	Propynal	hc, gc	S-Containing		
c-C ₃ H ₂ O	Cyclopropenone	gc	CH ₃ SH	Methyl mercaptan	hc
CH ₃ CHO	Acetaldehyde	cc, hc, gc	N,O-Containing		
C ₂ H ₃ OH	Vinyl alcohol	hc	NH ₂ CHO	Formamide	hc
c-CH ₂ OCH ₂	Ethylene oxide	hc, gc	CH ₃ CONH ₂	Acetamide	hc, gc
HCOOCH ₃	Methyl formate	hc, gc, of			
CH ₃ COOH	Acetic acid	hc, gc			
HOCH ₂ CHO	Glycolaldehyde	hc, gc			
C ₂ H ₃ CHO	Propenal	hc, gc			
C ₂ H ₅ OH	Ethanol	hc, of			
CH ₃ OCH ₃	Methyl ether	hc, gc			
CH ₃ COCH ₃	Acetone	hc			
HOCH ₂ CH ₂ OH	Ethylene glycol	hc, gc			
C ₂ H ₅ CHO	Propanal	hc, gc			
HCOOC ₂ H ₅	Ethyl formate	hc			


Six+ atoms including carbon

Herbst & van Dishoeck (2009)

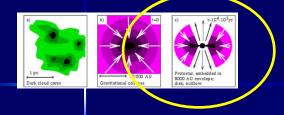
Temperature in a developing protostar

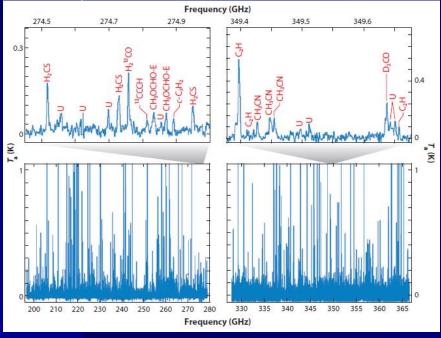


200+K T

1. Organic molecules in cold cores

TMC-1 spectrum, Kaifu et al. (2004)


 $HC_xN - cyanopolyynes,$ $C_xH - unsaturated hydrocarbon radicals,$ $CH_3OH - methanol$


Abundances of unsaturated species are higher than of saturated ones;

Dispersion in abundances between the sources

2. Organic species in hot cores/corinos

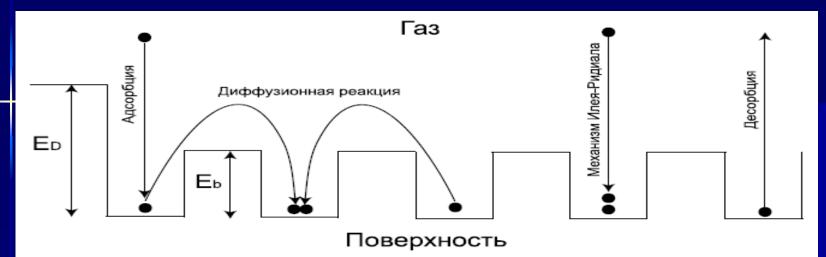
IRAS16293-2422 spectrum, Caux et al. (2005)

Predominantly saturated molecules: CH₃CN, CH₃OH, HCOOCH₃, CH₃OCH₃, CH₃C₂H, fractional abundances $\sim 10^{-8} - 10^{-7}$

Abundances are similar in different objects

«Prebiotic» molecules: Aminoacetonitrile $(NH_2CH_2CN) - found$ Ethylene glycol $(HOCH_2CH_2OH) - found$ Glycine $(NH_2CH_2COOH) - not found (yet?)$

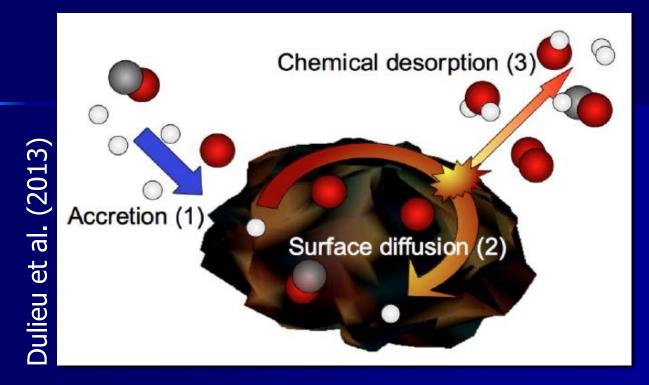
IRAS16293-2422, image from Jorgensen et al. (2016)


Formation and destruction of molecules in the ISM

Based on a slide by D. Semenov

N(r) ~ r ^{-3.5}, 10⁻⁶ < r < 10⁻⁴ cm

Diffusive surface chemistry



Molecular hydrogen formation: $H + H \rightarrow H_2$

Hydrogenation: $CO \rightarrow HCO \rightarrow H_2CO \rightarrow H_3CO \rightarrow CH_3OH$ $CH \rightarrow CH_2 \rightarrow CH_3 \rightarrow CH_4$ $NH \rightarrow NH_2 \rightarrow NH_3$

COMs formation: HCO + $H_3CO \rightarrow HCOOCH_3$ etc.

Chemical (reactive) desorption

Heat of reaction = Σ Heats of formation of reactants - Σ Heats of formation of products

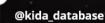
Heat of reaction ejects certain fraction of products to the gas: grX+grY -> grZ + Z(gas) The efficiency of RD was measured in experiments. Its dependence on the heat of reaction and surface coverage is quantified, although the results are controversial (e.g., Minissale et al. vs. Chuang et al.)

Astrochemical databases

Lister - [C:\projects\reduction\red2\rec\newnsm.rec]												
<u>Ф</u> айл <u>П</u>	<u>і</u> равка	Вид	Справка	3								21 <u>%</u>
9 0 2	He+		CH5N	HCNH+		H2	He 6.70E-1					
9 03	He+			011.11		11.	2 705 4		F0 0.00			
904							\rec\rate95.red					
9 05			<u>Ф</u> айл <u>Г</u>	<u>]</u> равка В	ид Справі	ка						0 <u>%</u> .
906				Н	H2	Н	Н	Н	4.67E-07	-1.00	55000.0 CDA	-
907				Н	C	CH	PHOTON		1.00E-17	0.00	0.0 NAA PH80	
9 08				H	CH	C	H2		4.98E-11	0.00	0.0MNEA NIST	
909				Н	CH	C	Н	Н	6.00E-09	0.00	40200.0 CDA	
910				H	CH2	CH	H2		2.70E-10	0.00	0.0MNEA NIST	
911				H	NH	N	H2		1.73E-11	0.50	2400.0 NEA	
912				H	CH3	CH2	H2		1.00E-10	0.00	7600.0MNEA NIST	
913				H	0	OH	PHOTON		9.90E-19		0.0 NAA	
914				H	NH2	NH	H2		5.25E-12	0.79	2200.0 NEA	
915			10		CH4	H2	CH3		5.82E-13	3.00	4045.0MNEA NIST	
916			11		OH	H2	0		7.00E-14	2.80	1950.0MNEA NIST	
917			12		OH	0	Н	H	6.00E-09	0.00	50900.0 CDA	
918			13		NH3	NH2	H2		7.80E-13	2.40	4990.0MNEA NIST	
919			14		H20	OH	H2		6.83E-12	1.60	9720.0MNEA NIST	
920			15		H20	OH	H	Н	5.80E-09	0.00	52900.0 CDA	
921			16		C2	CH	C		4.67E-10	0.50	30450.0 NEA	
922			17		CO	C	OH		1.10E-10	0.50	77700.0 NEA	
923	He+		18		C2H3	C2H2	H2		2.00E-11	0.00	0.0MNEA1NIST	
	_		19		HCN	CN	H2		6.31E-10	0.00	12400.0MNEE NIST	
			20		H2CN	HCN	H2		1.00E-10	0.50	0.0MNEA NM90	
			21		HCO	CO	H2		1.50E-10	0.00	0.0MNEA NIST	
			22	H	NO	NH	0		9.29E-10	-0.10	35220.0MNEA NIST	
			•									

~ 5000 - 7000 reactions, ~ 100 - 1000 surface reactions
 rates of only 10 - 20 % reactions measured/evaluated

KINETIC DATABASE FOR ASTROCHEMISTRY Home Species Download - References -

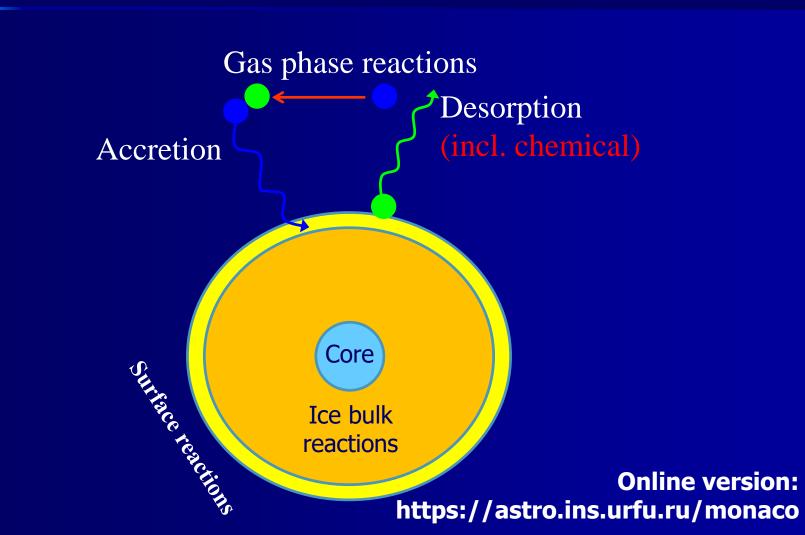

Help - Log in

KIDA is a database of kinetic data of interest for astrochemical (interstellar medium and planetary atmospheres) studies.

SEARCH

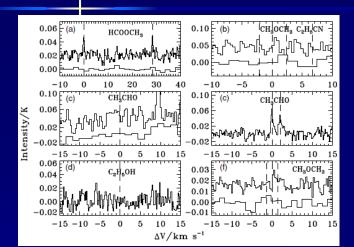
Indicate a species (ex: H3O+) or a couple of species (ex: C + H2) Warning : Second letter of 2-letters elements have to be lowercase, eg Si

17:19, Jan 07

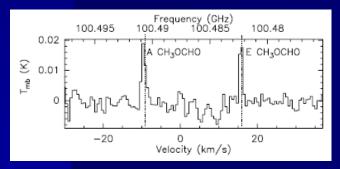

http://kida.obs.u-bordeaux1.fr/

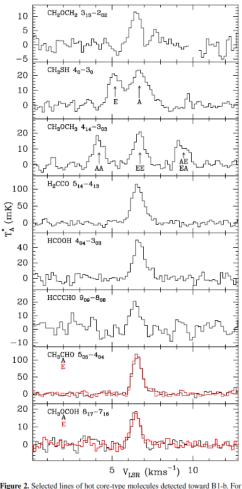
Numerical modeling

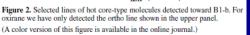
Chemical rate equations:

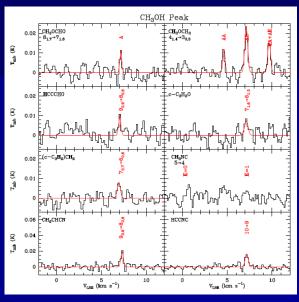

$$\begin{cases} \frac{dn_i}{dt} = \sum_{l} \sum_{m} K_{lm} n_l n_m - n_i \sum_{s} K_{is} n_s - k_{acc} n_i + k_{des} n_i \overset{dust}{\mathbf{Gas}} \\ \frac{dn_i^{dust}}{dt} = \sum_{l} \sum_{m} K_{lm} n_l^{dust} n_m^{dust} - n_i^{dust} \sum_{s} K_{is} n_s^{dust} + k_{acc} n_i - k_{des} n_i^{dust} \\ \mathbf{Surface} \end{cases}$$

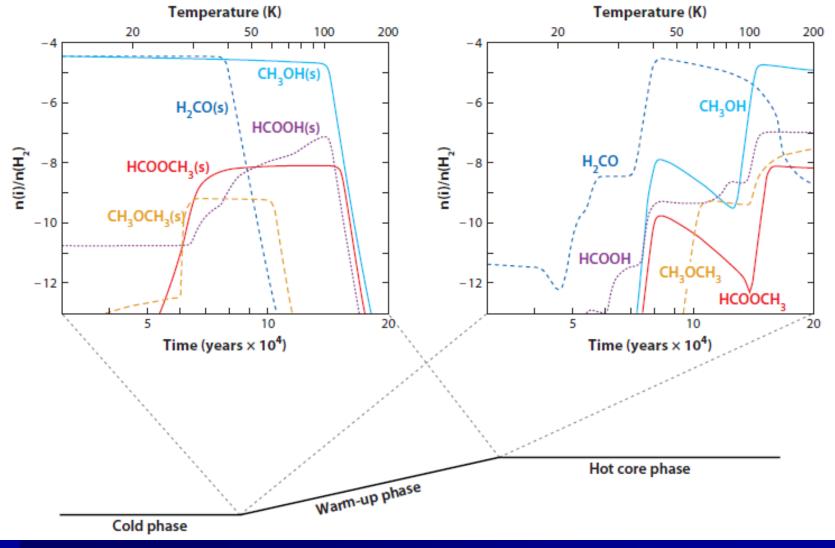
Rate equations-based code MONACO for the numerical simulations of gas-grain chemistry in the ISM (Vasyunin&Herbst 2013, Vasyunin et al. 2017)



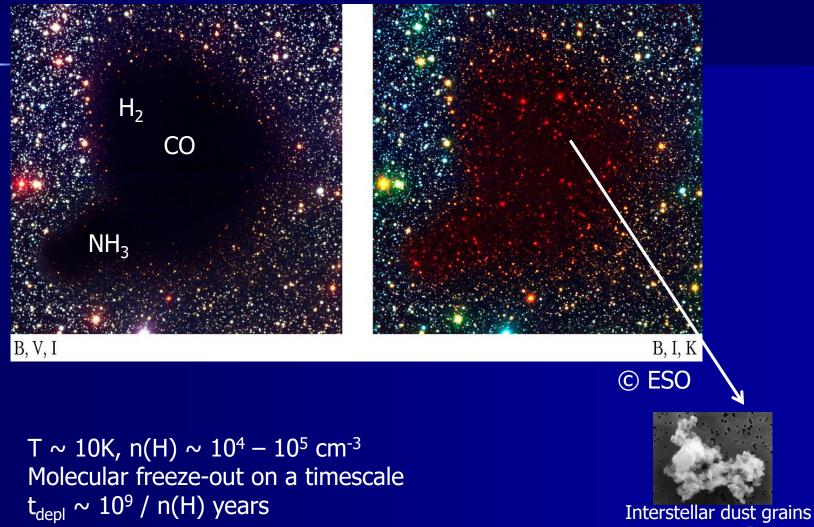

COMs typical for hot cores in cold clouds:


Fractional abundances: $10^{-10} - 10^{-11}$ w.r.t. H.


B1-b, Oeberg et al. 2010



L1689b, Bacmann et al. 2012 B1-b, Cernicharo et al. 2012


Jiménez-Serra, Vasyunin et al. 2016

Formation of COMs during the warm-up of a hot core

Garrod & Herbst (2006)

Physical conditions at the earliest stages of star formation

<a> ~ 10⁻⁵ cm

"Cold" COMs vs. "Hot" COMs: a modeler's perspective

Hot:

Found in hot cores/corinos Abundances wrt.H $\sim 10^{-8} - 10^{-7}$ Formed in radical-radical surface chemistry during warm-up phase from 10 K to > 100 K, at 30-40 K, then thermally evaporated to gas

(Garrod&Herbst 2006)

Cold:

Found in cold clouds (pre-stellar cores), Tdust, Tgas ~ 10 K Abundances wrt.H $\sim 10^{-11} - 10^{-10}$

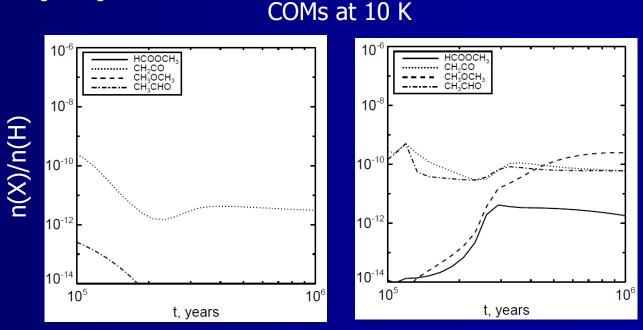
Cannot be formed during warmup phase because of no warm-up phase!

Proposed scenarios of cold COMs formation:

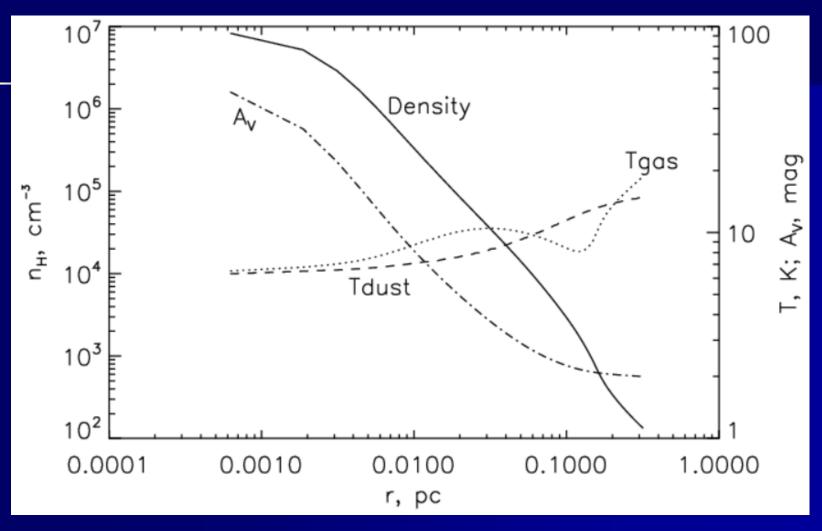
Vasyunin & Herbst (2013) Reboussin et al. (2014) Ruaud et al. (2015) Fedoseev et al. (2015) Balucani etl al. (2015) Ivlev et al. (2015)* Chuang et al. (2016) Vasyunin et al. (2017) Shingledecker et al. (2018)

Scenario by Vasyunin&Herbst (2013) :

```
Efficient chemical desorption + reactions in the
cold gas


grH+grH_2CO \rightarrow grCH_3OH (90\%)

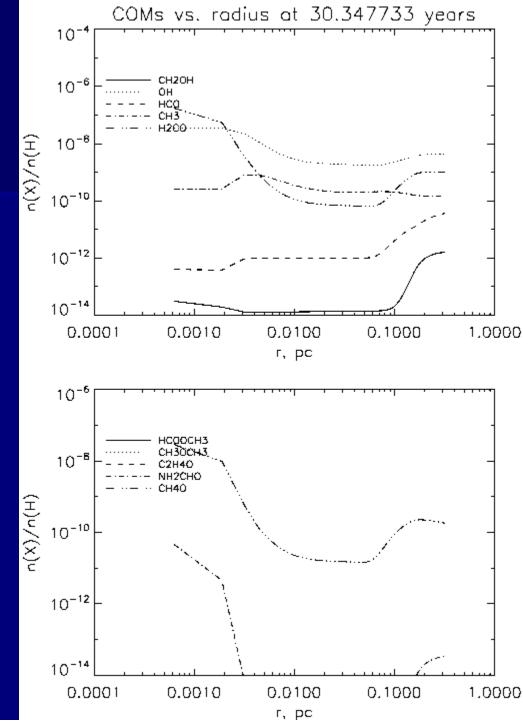
grH+grH_2CO \rightarrow CH_3OH (10\%) - ejected to gas via chemical desorption


CH_3OH+H_3O^+ \rightarrow CH_3OH_2^+ + H_2O

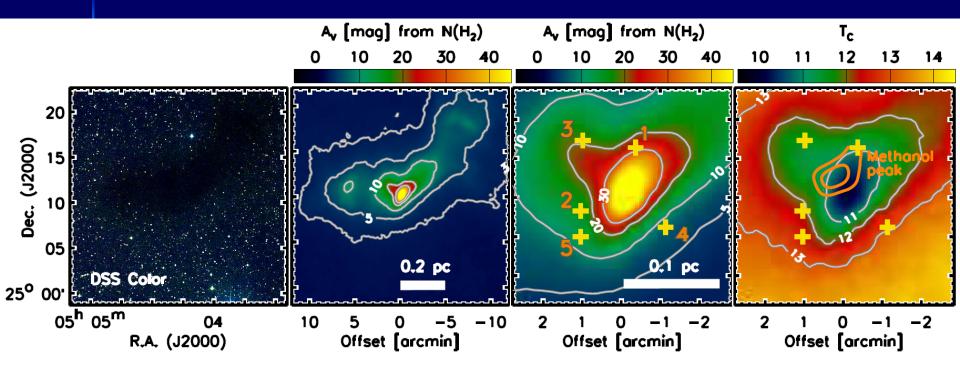
CH_3OH_2^+ + CH_3OH \rightarrow CH_3OHCH_3^+

CH_3OHCH_3^+ + e^- \rightarrow CH_3OCH_3 + H
```


L1544 physical model:



Keto&Caselli (2012)


1D modeling of COMs in L1544

"Methanol peak": Bizzocchi et al. (2014), Vastel et al. (2014), Jimenez-Serra, Vasyunin et al. (2016)

Vasyunin et al., ApJ (2017)

What about ices? Case of L1544

Fig. 1. The locations of the sources in L 1544 observed in the present study. First panel from the left : DSS color image of L 1544 to delineate the dark patch of the starless core. Second : the extinction map based on the Herschel/SPIRE far-infrared imaging. Third: a close-up view of the central part of L 1544, enclosed in the orange rectangle on the second panel. The positions of the 2MASS/WISE sources are marked with crosses. Fourth: the dust color temperature based on Herschel/SPIRE imaging. The methanol peak observed by Bizzocchi et al. (2014) is shown in the orange contours.

Goto, Vasyunin et al., submitted

Methanol and water ice in L1544 with SpeX IRTF

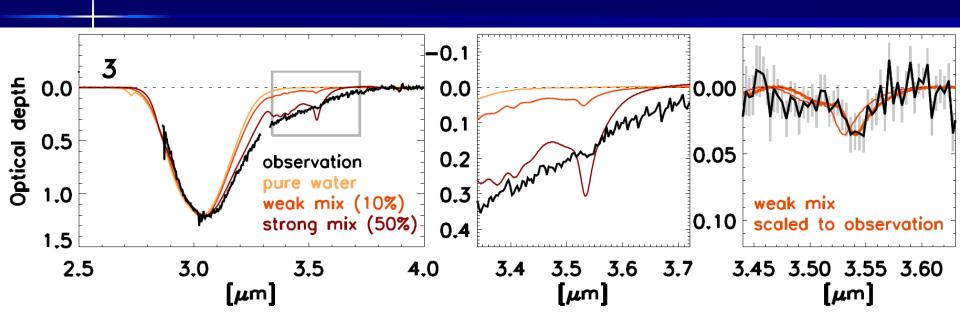
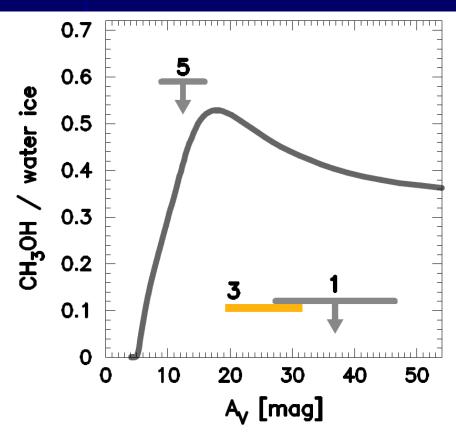
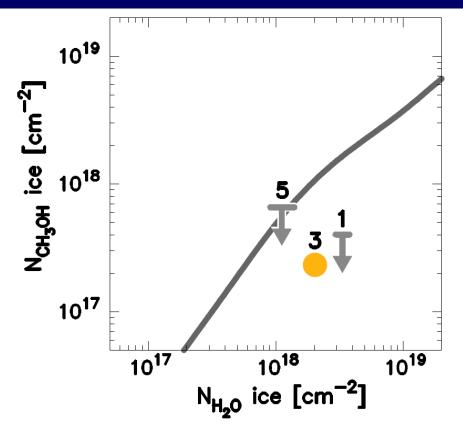




Fig. 3. Left: the spectrum of the source #3 (in black trace) compared to the laboratory ice spectra from Hudgins et al. (1993). The pure water ice

Goto, Vasyunin et al., submitted

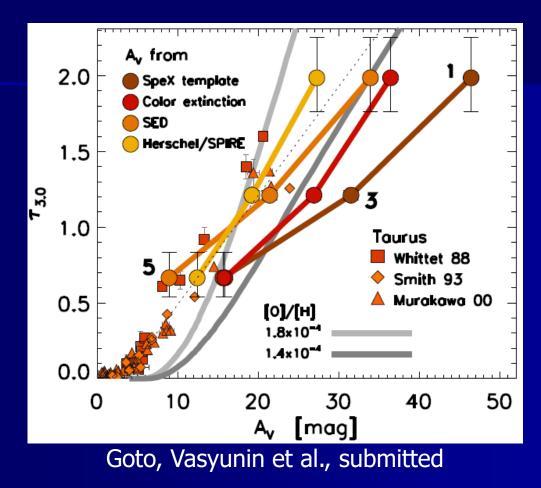


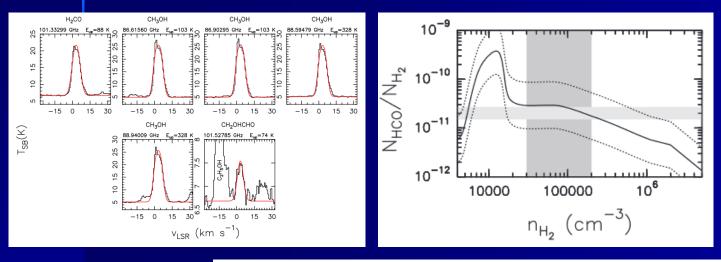
Fig. 6. Fraction of methanol-ice with respect to water-ice column density plotted as a function of the visual extinction A_V on the line of sight through the cloud. The gray curve is the model calculation by Vasyunin et al. (2017). The methanol to water ice ratio observed on source #3 is marked by a horizontal yellow line, with the extent of the line denoting the full range of A_V measured by different methods. The upper limits on the methanol ice abundance are shown with downward arrows in light gray for sources #1 and #5. The fraction of the methanol ice detected on #3 is 4.5 times smaller than is expected.

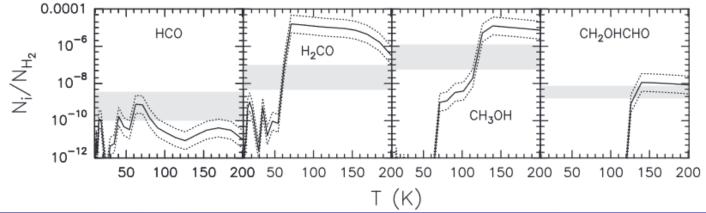
Fig. 7. Column density of methanol ice plotted against that of water ice. The gray curve is the model calculated by Vasyunin et al. (2017). The methanol ice column density on source #3 is shown in yellow circle. The uncertainty of the column densities are smaller than the size of the symbol. The upper limits on source #1 and #5 are shown in downward arrows. The extent of the horizontal bars denotes the uncertainty in $N(H_2O)^{ice}$. The methanol ice detected on source #3 and the upper limit set on source #1 are smaller than that of the model predictions by factors of 5.0 and 4.1, respectively.

Goto, Vasyunin et al., submitted

Optical depth of water ice at 3 um vs. visual extinction

Additional depletion of elemental oxygen is needed to fit observational trend


Hot core chemistry: IRAS16293 with ALMA


MNRAS 483, 806–823 (2019) Advance Access publication 2018 November 16 doi:10.1093/mnras/sty3078

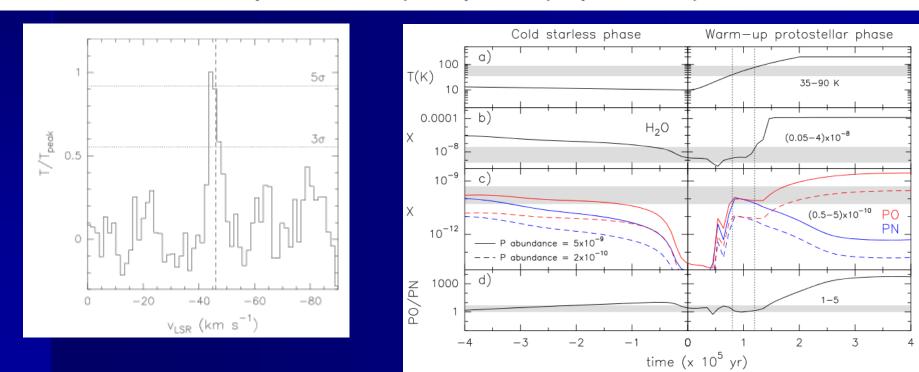
A combination of hot and cold chemistries

First ALMA maps of HCO, an important precursor of complex organic molecules, towards IRAS 16293–2422

V. M. Rivilla,¹* M. T. Beltrán,¹ A. Vasyunin,^{2,3,4} P. Caselli,² S. Viti,⁵ F. Fontani¹ and R. Cesaroni¹

Prebiotic but not organic? PO in high-mass star-forming regions

THE ASTROPHYSICAL JOURNAL, 826:161 (8pp), 2016 August 1


© 2016. The American Astronomical Society. All rights reserved.

doi:10.3847/0004-637X/826/2/161

THE FIRST DETECTIONS OF THE KEY PREBIOTIC MOLECULE PO IN STAR-FORMING REGIONS

V. M. RIVILLA¹, F. FONTANI¹, M. T. BELTRÁN¹, A. VASYUNIN^{2,3}, P. CASELLI², J. MARTÍN-PINTADO⁴, AND R. CESARONI¹ Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125, Firenze, Italy ²Max-Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748, Garching, Germany ³Ural Federal University, Ekaterinburg, Russia ⁴Centro de Astrobiología (CSIC-INTA), Ctra. de Torrejón a Ajalvir km 4, E-28850, Torrejón de Ardoz, Madrid, Spain *Received 2016 April 28; revised 2016 May 14; accepted 2016 May 17; published 2016 July 28*

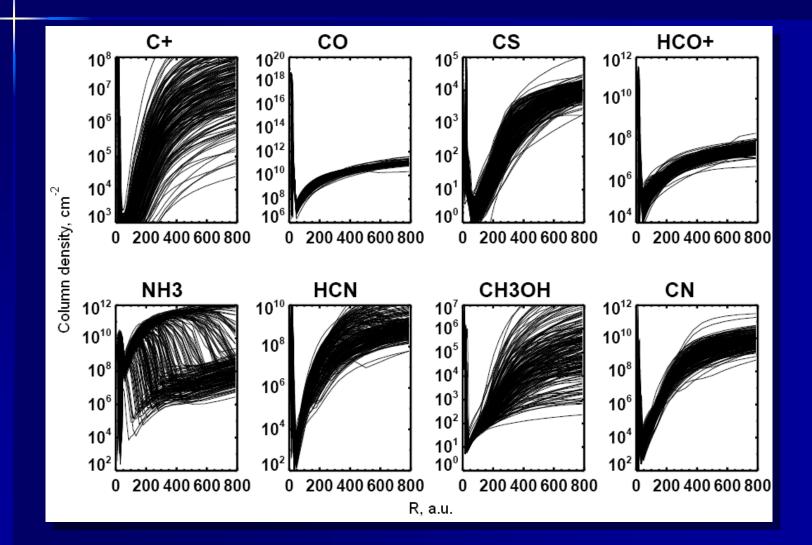
Conclusions

1. Studies of molecular inventory of star-forming regions is one of the most active fields in astrophysics/astrochemistry. The formation of COMs is one of the topics that attract most interest.

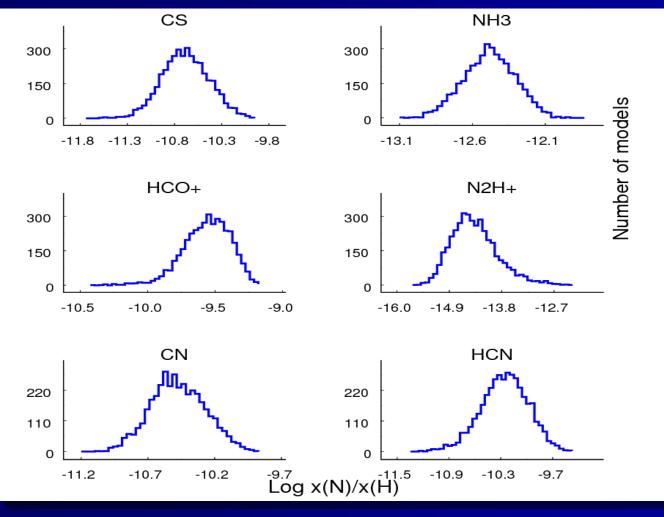
2. COMs are found at different stages of low-mass star formation: from the earliest stages represented by prestellar cores and up to protoplanetary disks

3. Modern observational facilities, already working and those to be launched soon (JWST) are the key driver of the progress in the field

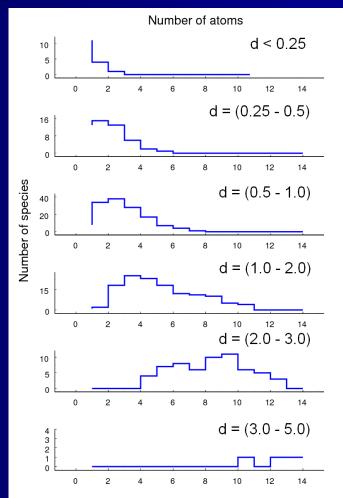
4. A variety of physical and chemical mechanisms lead to the formation of COMs in Space. Many of those mechanisms are yet to be explored in details

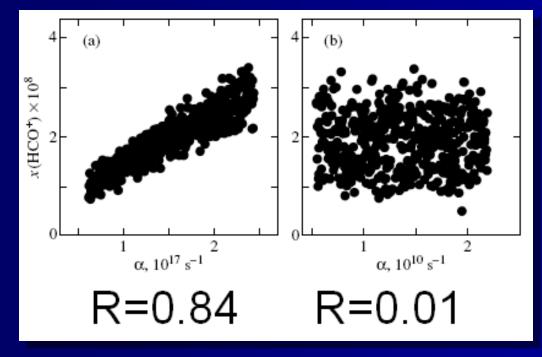

5. Laboratory studies are very valuable for the understanding of chemistry in space.

Thank you for your attention!


Financial support by

UrFU («5-100») RScF, project 18-12-00351 LZP, project lzp-2018/1-0170


Extra slides


Shape of abundance distributions is almost Gaussian:

Uncertainty grows up with complexity of a species:

Identification of most "uncertain" reactions: $H_2 + C.R.P. \rightarrow H_2^+ + e^- N + CH \rightarrow CN + H$

