

BINARY STARS AS FOSSILS OF PAST NUCLEOSYNTHESIS

Sophie Van Eck

UNIVERSITÉ LIBRE DE BRUXELLES The Periodic Table Through Space and Time

The rise of spectroscopy

 August 18, 1868: Jules Janssen, total eclipse in eclipse in Guntur (India): mesurement of He lines (587.49 nm)

Five Millennium Canon of Solar Eclipses (Espenak & Meeus)

The rise of spectroscopy

- August 18, 1868: Jules Janssen, total eclipse in eclipse in Guntur (India): mesurement of He lines (587.49 nm)
- 1868: Father Angelo Secchi: discovery of carbon stars

The rise of spectroscopy

- August 18, 1868: Jules Janssen, total eclipse in eclipse in Guntur (India): mesurement of He lines (587.49 nm)
- 1868: Father Angelo Secchi: discovery of carbon stars
- 1869: Mendeleev formal presentation to the Russian Chemical Society, titled "The Dependence between the Properties of the Atomic Weights of the Elements"

Including Carbon, but without Helium till 1902

Carbon enrichment is ubiquitous

(especially at low-Z)

CEMP (Carbon-enriched metal-poor)

Different definitions:

[C/Fe]>1 (Beers & Christlieb 2005)

[C/Fe]>0.7 if log L/Lsun<2.3</p>

[C/Fe]=3-log(L/Lsun) if log L>2.3 (Aoki+2007)

- Smoother transition
 between the high-C
 band and the low-C
 band
- CEMP-no in the high C band, challenging
 the AGB pollution
 scenario

Binarity is ubiquitous (especially at low-Z)

The SB1 fraction decreases with increasing metallicity

 \rightarrow By - 14% +- 6% per metallicity dex in the range -1.2 < [Fe/H] < 0 (FGK, Grether & Lineweaver 2007)

 \rightarrow By ~ - 14% per metallicity dex (APOGEE, Badenes+ 2018)

→ by - 9% +- 3% per metallicity dex
 in the range -2.5<[Fe/H]<+0.5
 (FGK, Gaia-ESO Survey, Merle, Van der
 Swaelmen, Van Eck+, submitted)

See also meta-analysis of Moe & Di Stefano

Intersection: C-enrichment and binarity

At low Z

- CEMP-no have normal binarity rate
- → fossile record from a
- C-enriched ISM

(Arentsen+ 2018, A&A 621, A108)

CEMP-rl and -rll have normal binarity rate

3/17=17%

(T. T. Hansen+ 2015 A&A 583, A49, 2015)

Consistent with binary frequency of other metal-poor giants in the halo ~16% (Carney+ 2003)

Intersection: C-enrichment and binarity

At low Z

CEMP-s and CEMP-rs are compatible with 100% binaries

(Arentsen+ 2019, Hansen+ 2016, Starkenburg+ 2014, see also Lucatello+ 2005)

 CEMP-s: past pollution by companion AGB

→ CEMP-rs:

- 1st scenario: r from former neutron star merger, s from pollution by AGB companion
- 2nd scenario: i-process, producing rand s-mixture, in AGB companion

CEMP r+s

CEMP r+s

1st scenario:

CEMP-s star (AGB pollution) initially formed from r-process-enriched gas:

r-I profile from former neutron star merger, s from pollution by AGB companion

> RAVE J094921.8-161722 [Fe/H]=-2.2 Age (Th/Eu) 13.1 Gyr Gull+ 2018, ApJ 862, 174

CEMP r+s

CEMP r+s

Successive contribution from r- and s- processes seem to fail in several cases (Cohen+ 2003; Ivans+ 2005; Jonsell+2006; Abate+ 2016)

- \square 2nd scenario:
- → i-process (Cowan & Rose 1977) which also operates in AGB stars s-process: T~10⁸K, N_n = 10⁷-10¹¹ cm⁻³ r-process: T> 10⁹K, N_n > 10²⁰ cm⁻³ i-process: N_n ~ 10¹⁵ cm⁻³

 \rightarrow this n burst is reachable (at least) in low-Z AGB stars

CH, Barium and extrinsic S stars

CH, Barium and extrinsic S stars

stars are all binaries,

1999, 2000)

Ba stars from Escorza et al., 2017 S stars from Shetye, Van Eck et al., in prep.

CH, Barium and extrinsic S stars Radioisotopes

CH, Barium and extrinsic S stars
Radioisotopes

Nb dichotomy: Bisterzo+ 2010

CH, Barium and extrinsic S stars
Radioisotopes

CH, Barium and extrinsic S stars
Radioisotopes

CH, Barium and extrinsic S stars
Radioisotopes

Diagnostic from the ⁹³Zr radio-isotope

Karinkuzhi+ 2018, A&A 618, A32 Parameters from BACCHUS (Masseron+ 2016)

CH, Barium and extrinsic S stars
Radioisotopes

Karinkuzhi+ 2018, A&A 618, A32 Parameters from BACCHUS (Masseron+ 2016)

CH, Barium and extrinsic S stars
Radioisotopes

Karinkuzhi+ 2018, A&A 618, A32 Parameters from BACCHUS (Masseron+ 2016)

CH, Barium and extrinsic S stars
Radioisotopes

• ${}^{13}C(\alpha, n)$ ${}^{16}O$ neutron source

Karinkuzhi, Van Eck et al., 2018

Binary fossils at higher metallicity (-1<[Fe/H]<0) CH, Barium and extrinsic S stars

□ Rubidium

Extrinsic, Intrinsic and ... Trinsic stars S stars

Radioisotopes

2 peculiar objects:

- Nb-rich, binaries
 →Extrinsic
- But: Tc-rich
- \rightarrow Also Intrinsic

BD +79 156 O¹ Ori

"Trinsic" stars

Shetye, PhD thesis 2019

Fossilvson-going nucleosynthesisExtrinsicvsintrinsicstars

Predicted (L. Siess) vs observed (Gaia DR2) location of S stars in the HR diagram

Pastvson-going nucleosynthesisExtrinsicvsintrinsicstars

Shetye, Van Eck et al., 2018, 2019

Pastvson-going nucleosynthesisExtrinsicvsintrinsicstars

Shetye, Van Eck et al., 2018, 2019

Dredge-up from 1Msun mass stars

Examples of spectral fitting

Shetye + 2018

On-going nucleosynthesis

s-process cosmo-chronology

99
Tc \rightarrow 99 Ru ($\tau_{1/2} = 0.21 \ 10^6 \text{ yrs}$)

 93 Zr \rightarrow 93 Nb ($\tau_{1/2}$ = 1.53 10⁶ yrs)

The derived ages correlate with the infrared excess: $R = F(12 \ \mu m)/F(2.2 \ \mu m)$

Merger stars as fossils of past nucleosynthesis

□ (Early-) R stars:

- Solar metallicity, K-type giants
- enriched in C- and N, low ${}^{12}C/{}^{13}C$
- No s-process enrichment
- Core-He burning
- 0% of binaries (McClure 1997)

- Possible explanation:
- Merging RGB+WD, common envelope and He-flash in a rotating core, mixing C to the surface (Izzard 2007)

HERMES (KULeuven, ULB, ROB) monitoring of R-type stars

Merger stars as fossils of past nucleosynthesis

CK Vul: remnant of stellar merger

Millimeter wave detection of a radioactive molecule ²⁶AIF in a remnant of an ancient explosion

10

Kaminski et al., accepted to Nature Astronomy https://arxiv.org/abs/1807.10647

²⁶Al synthesis on the
 RGB and ejected
 during coalescence

26AIF(6-5) ⁶AIF(3-2) 3 NOEMA ALMA 1.0 27AIF 2. ²⁶AIF 0.5 60 27AIF(3-2) 20 27AIF(6-5) Flux density (mJy) 50 -NOEMA ALMA 15 40 30 10 20 10 -200 -100 0 100 200 LSR velocity (km s⁻¹) -200 -100 0 100 200 -200 -100 0 100 200 LSR velocity (km s⁻¹) LSR velocity (km s⁻¹)

Conclusions

- Binary fossils (extrinsic stars) bear signatures of a past nucleosynthesis, helping to *directly* trace nucleosynthesis at various epochs
- C-enrichment + binarity reveal a diverse zoo (CEMP-s, -rs, CH, Ba, S, etc)
- Key-diagnostic (Tc, Nb, Rb...) provide s-process conditions (for example thermometer and chronometer)

