Chemical modeling of C/O ratio in protoplanetary disks

<u>Tamara Molyarova</u>¹, Dmitry Semenov², Vitaly Akimkin¹, Thomas Henning², Dmitri Wiebe¹

¹ Institute of Astronomy, Russian Academy of Sciences, Moscow, Russian Federation

² Max Planck Institute for Astronomy, Heidelberg, Germany

The Periodic Table through Space and Time Saint-Petersburg 2019

Carbon-to-oxygen ratio

- C/O > 1 is observed in atmospheres of exoplanets (Swain+09, Madhusudhan+11) and in gas phase in protoplanetary disks (Bergin+16, Semenov+18, Cleeves+18)
- Carbon excess can appear in gas and ice phases due to redistribution of major volatiles
- Possible connection to planet formation mechanisms

Eistrup+16

ANDES model

- Non-equilibrium astrochemical code ANDES by Akimkin+13 is used to calculate chemical evolution of the disk.
- Axially-symmetric disk model
- Hydrostatic equilibrium in vertical direction
- Modified ALCHEMIC reactions network (Semenov & Wiebe 2011) with 650 species and 7803 reactions including surface chemistry.

Main model parameters are: stellar mass M_{\bigstar} , disk mass M_{disk} , disk characteristic radius R_c , initial chemical composition

Example of disk structure in ANDES

Model parameters

- We run a number of models with different parameters
- Reference initial elemental composition is "low metals"
- Models with higher C.

Parameter	Values
M_{\bigstar}, M_{\odot}	0.3, 0.5, 1.0, 1.5, 2.5
$M_{disk}, \% M_{\bigstar}$	0.1, 0.3, 1, 3, 10
R _c , au	20, 50, 100

low metals
by Lee+98
C/O=0.4

Eistrup+16, C/O=0.35

H ₂	0.499
Не	0.09
Н	0.002
С	7.3(-5) 1.408(-4) 2.112(-4)
Ν	2.14(-5)
0	1.76(-4)
S	8(-8)

H20.5He9.8(-2)H9.1(-5)C1.8(-4)N6.2(-5)O5.2(-4)S6(-6)

+ molecular abundances from Eistrup+16

 \sim the same physical structure

different chemical network

Reference model

 $M_{disk} = 0.01 M_{\odot}$ $M_{\bigstar} = 1 M_{\odot}$ $R_c = 50$ au Elemental initial composition with C/O=0.41 (low metals by Lee+98)

7

C/O in disks with different stars

C/O in gas (solid lines) and in ice (dashed lines)

C/O in gas phase is close to 1:

- around 1 au in models with low-mass disks around low-mass stars
- between 20-30 au in models with massive disks around massive stars

C/O in ice phase is exceeds 1:

• in the inner hot region of disks

Initial metallicities

C/O=0.41

C/O=0.8

C/O=1.2

Molecular initial composition

initial abundances from Eistrup+16

Conclusions

- C/O in the disc midplane changes sharply around the snowlines of water and carbon dioxide. Gas-phase processes affect C/O as well
- Carbon and oxygen have very low midplane abundances in the gas in the bulk of protoplanetary disc (outside CO₂ snowline).
- C/O variations in the midplane are larger than in vertically averaged C/O.
- C/O in the gas phase tends to reach 1 in the inner regions (right outside the water snowline) of the least massive discs around the least massive stars, as well as at 10–20 au in more massive discs.