The elusive origin of nitrogen in the Solar System

Pierre Hily-Blant V. Magalhaes, J. Kastner, A. Faure, T. Forveille G. Pineau des Forêts, D. Flower, C. Rist

institut universitaire de France

The conendrum

- ¹⁴N/¹⁵N ratio in comets: <u>145</u> (Bockelée-Morvan+15, Hily-Blant+17)
- Elemental ratio in the protosolar nebula (PSN): <u>441</u> (Marty+11)
- Comets as a tracer of a fractionated reservoir of nitrogen in the PSN

Questions

- Formation of the solar system and of planetary systems in the galaxy
 - Origin of organic matter in primitive cosmomaterials
 - Nature of planetary atmospheres (primary vs secondary) ?
- When, where, and how, isotopic reservoirs form, from clouds to comets ?
 - Interstellar heritage ?
 - How can we learn on the protosolar nebula from protoplanetary disks ?

Key questions and aims

- Origin of the ¹⁵N-rich reservoir seen in comets?
 - Inherited from interstellar cloud ? Created *in situ* during the formation ? Result of processes in the comets *a posteriori* ?
 - What are the fractionation processes ?
- How to follow isotopic reservoirs from clouds to meteorites?
 - Measure isotopic ratios in several species (CN, HCN, NH₃, N₂H⁺, etc)
 - Towards dense clouds, protostars, protoplanetary disks
 - Precise ratios with calibration-limited accuracy (~10%)
- What is the elemental ¹⁴N/¹⁵N ratio in the local ISM?
 - PSN: formed 4.6 Gyr ago, perhaps at a different location in the galaxy
 - Nucleosynthesis: evolution of the ¹⁴N/¹⁵N elemental ratio
 - Needed to compare the protosolar nebula with present-day analogs

Protoplanetary disks (1)

 $C^{14}N$

HC¹⁴N ALMA archive H¹³CN

Hily-Blant+17

- Indirect measurements
 - HCN: <ratio> = 111±20 (Gúzman+17, Hily-Blant+17)
- Direct measurements
 - CN: 323±30 (Hily-Blant+17),
 HCN: 230±20 (Hily-Blant+19)

¹⁵N-rich reservoir present during comet formation

Protoplanetary disks (2)

54au: R=304±23 30au: R=114±5

	HCN/HC ¹⁵ N	HCN/H ¹³ CN	H ¹³ CN/HC ¹⁵ N
Average	230 ± 20	86±4	2.6±0.2
$0.5 \pm 0.1''$	114±5	84±5	1.36 ± 0.14
$0.7 \pm 0.1^{\prime\prime}$	200 ± 20	78 ± 5	2.55 ± 0.14
$0.9 \pm 0.1^{\prime\prime}$	304 ± 23	82±4	3.7±0.2

- Radial dependence of HCN/HC¹⁵N ratio
- R=114±5 in the comet formation region
- R increases to 304±23 at 60 au
- Selective photodissociation (Heays+14, Visser+18) but <u>values disagree</u>
- HCN/H¹³CN > ¹²C/¹³C=70; contrary to models

Radial increase of HCN/HC¹⁵N Selective photodissociation of N₂: favoured process

Low-mass protostars: role of ices

Magalhaes, in prep

- Indirect measurement in HCN
 - $160 460 \pm 10\%$ in the cold envelope (Wampfler+14)
- Direct measurements: NH₂D/¹⁵NH₂D with ALMA/NOEMA+IRAM30m
 - Prelim. result: 14N/15N in sublimation region > 2 x envelope (Magalhaes in prep)

Preliminary result: fractionation in ices ? ¹⁵N-poor reservoir in the sublimation zone

Dense starless cores

- Usual method: double isotopic ratios (HCN/H¹³CN x H¹³CN/HC¹⁵N)
 - Not precise; large scatter (Hily-Blant et al 2013, and many others!)
- Direct measurements
 - HCN: radiative transfer with hyperfine overlap (Magalhaes+18)
 - N_2H^+ : average ratio = <u>770±140</u>; ¹⁴N/¹⁵N average (w/o N₂H⁺) = <u>323±10</u>
 - Differential accretion rates in collapsing clouds could lead to fractionation (HB+19b)

Multiple reservoirs in dense cores

The present-day ¹⁴N/¹⁵N ratio

- Diffuse measurements
 - HCN = 276±34 (Lucas&Liszt 98); 304±37 after correction from selective photodissociation
 - CN: large (self-inconsistent) scatter, 234 452, <ratio>=274±20 (Ritchey+15)
- Galactic gradient: 290±40 (Milam+05)

```
Present-day elemental ratio: 330±30 (Hily-Blant+17, +19)
```

10

Conclusions

- The elemental ¹⁴N/¹⁵N ratio: 330±30 from direct measurements in the dense ISM; diffuse ISM ~ smaller
- A ¹⁵N-rich reservoir is present in PSN analogs at the time of comet formation, with the same characteristic 3:1 ratio wrt elemental
- Selective photodissociation may be the main fractionation process at the origin of the ¹⁵N-rich reservoir in comets
- A ¹⁵N-poor reservoir, traced by N₂H⁺, is present in prestellar cores
- ¹⁴N-¹⁵N exchange processes in ices may be efficient during the prestellar and/or sublimation phase

Perspectives

- Observations
 - More direct measurements in disks (CN, HCN, other)
 - More direct measurements in low-mass protostars and starless cores
- Experiments
 - ¹⁴N-¹⁵N exchange in ices
- Modeling
 - Interstellar clouds: elucidate the N₂H⁺ problem
 - Disks: reconcile selective photodissocation predictions with observations
- Connection with GCE models
 - Precise and accurate value for the local ISM
 - Sun migration: independent constraints (e.g. from isotopic ratios)
 - Galactic gradient (e.g. high-mass protostars, Colzi et al)

Thank you for your attention