$$\begin{array}{c} & n_i \sum_{j \neq i} (R_{ij} + C_{ij}) = \\ & \sum_{j \neq i} n_j (R_{ji} + C_{ji}) \\ & \mu \frac{\mathrm{d}I_{\nu}}{\mathrm{d}\tau_{\nu}} = I_{\nu} - S_{\nu} \end{array} \end{array}$$

Elemental abundances from massive stars: The present-day composition of the local Milky Way

Norbert Przybilla M.F. Nieva, K. Butler, A. Irrgang, V. Schaffenr<u>oth</u>

Institute for Astro- and Particle Physics

Early B-type Stars (Main Sequence)

Intro

- massive M: ~ 8 ... 18 M
- hot T_{eff}: ~ 16000 ... 32000 K
- luminous
 - L: ~ several 10³ ... 10⁴ L₀

XXI Mendeleev Congress St. Petersburg – 13.9.2019

Abundance Standards: Solar vs. Cosmic

Sun

- 4.56 Gyr old
- far from Galactic birth radius
- highly detailed observations
- complex atmosphere: convection (3D), chromosphere
- overall small departures from LTE
- diffusion: photospheric vs. bulk composition
- laboratory studies of CI chondrites feasible

• one object: typical or special?

Early B-type stars

- young: ~ 10 Myr
- close to parental star-formation region
- (bright) point sources
- simple atmospheres: radiative equilibrium (1D)
- line spectra: ubiquous non-LTE effects
- weak stellar winds: no diffusion, no impact on atmospheric structure
- no dust depletion unlike in HII regions & the diffuse ISM
- pollution with CNO-cycled material possible
- several ten objects in solar neighbourhood (d<500pc)

Intro

Chemical (In)Homogeneity from Cosmic Abundance Indicators

Metals in Solar Neighbourhood/Star Clusters

Chemical (In)Homogeneity from Cosmic Abundance Indicators

Dispersal and mixing of oxygen in the interstellar medium of gas-rich galaxies

J.-R. Roy^{1,2} and D. Kunth³

universität innsbruck

- ¹ Département de Physique and Observatoire du Mont Méganic, Université Laval, Québec, QUE G1K 7P4, Canada e-mail: jrroy@phy.ulaval.ca
- ² Observatoire de Paris, DAEC, Unité associée au CRS, DO 173, et à l'Université Paris 7, F-92195 Meudon Cedex, France
- ³ Institut d'Astrophysique, 98 bis, Blvd. Arago, F-75014 Paris, France

Received 17 March 1994 / Accepted 5 July 1994

Abstract. Stellar and nebular abundance indicators reveal that there exists significant abundance fluctuations in the interstellar medium (ISM) of gas-rich galaxies. It is shown that at the present observed solar level of O/H $\sim 6 \, 10^{-4}$, abundance differences of a factor of two, such as existing between the Sun and the nearby Orion Nebula, are many times larger than expected. We examine a variety of hydrodynamical processes operating at scales ranging from 1 pc to greater than 10 kpc, and show that the ISM should appear better homogenized chemically than it actually is: (i) on large galactic scales ($1 \ge l \ge 10$ kpc), turbulent diffusion of interstellar clouds in the shear flow of galactic differential rotation is able to wipe out azimuthal O/H fluctuations in less than 10^9 yr; (*ii*) at the intermediate scale ($100 \ge l \ge 1000$ pc), cloud collisions and expanding supershells driven by evolving associations of massive stars, differential rotation and triggered star formation will re-distribute and mix gas efficiently in about 10^8 yr; (*iii*) at small scales ($1 \ge l \ge 100$ pc), turbulent diffusion may be the dominant mechanism in cold clouds, while Rayleigh-Taylor and Kelvin-Helmhotz instabilities quickly develop in regions of gas ionized by massive stars, leading to full mixing in $< 2 \, 10^6$ yr.

• massive stars & HII regions

chemical inhomogeneity

BUT

 gas-phase of ISM in solar neighbourhood homogeneous (e.g. Sofia & Meyer 2001)

Theory:

 efficient mixing mechanisms
 homogeneity (e.g. Edmunds 1975, Roy & Kunth 1995)

Location of Sample Stars in Solar Neighbourhood

universität innsbruck

XXI Mendeleev Congress St. Petersburg – 13.9.2019

Observational bias

Identification of problematic objects before analysis starts:

- Be stars: impact of light from disk on photospheric spectrum: veiling
- CP phenomenon: rare among early B-type stars but: He-strong, He-weak stars

Basic equations of classical stellar atmosphere problem

• radiative transfer equation - energy transport:

 ∞

$$\mu \frac{\mathrm{d} \mathsf{I}_{\nu}}{\mathrm{d} \tau_{\nu}} = \mathsf{I}_{\nu} - \mathsf{S}_{\nu} \qquad \qquad \Rightarrow \qquad \mathsf{J},$$

• radiative equilibrium (+ convective energy transport for cool stars) - energy conservation:

$$\int_{0}^{\infty} H_{\nu} d\nu = \text{const.} = \frac{\sigma}{4\pi} T_{\text{eff}}^{4} \qquad \Rightarrow T$$

• hydrostatic equilibrium - momentum conservation:

$$\frac{dP}{dz} = -\rho \cdot (g - g_{rad}) + ideal gas$$

• detailed equilibrium (LTE): Saha- & Boltzmann-formula

$$\frac{n_{up}}{n_{low}} = \frac{1}{n_e} \cdot 2\left(\frac{2\pi m_e kT}{h^2}\right)^{3/2} \frac{g_{up}}{g_{low}} e^{-\left(\frac{E_{up}-E_{low}}{kT}\right)}$$

$$\frac{n_i}{n_j} = \frac{g_i}{g_j} e^{-\left(\frac{E_i - E_j}{kT}\right)}$$

• statistical equilibrium (NLTE): rate equations

$$n_i \sum_{j \neq i} \left(R_{ij} + C_{ij} \right) + n_i (R_{ik} + C_{ik}) = \sum_{j \neq i} n_j (R_{ji} + C_{ji}) + n_k (R_{ki} + C_{ki})$$

• charge conservation:

n_e

 \Rightarrow

Ν

 \Rightarrow

Codes

- LTE model atmospheres: ATLAS9 (Kurucz)
- radiative transfer & statistical equilibrium (trace species approx.)
 DETAIL (Giddings, Butler + many recent updates/extensions)
- formal solution:
 SURFACE (Giddings, Butler + many recent updates/extensions)

→ hybrid non-LTE: ADS

huge amounts of atomic data: OP/IRON Project, physics literature & own

Diagnostics

Test: Spectroscopic vs. Hipparcos Distances

XXI Mendeleev Congress St. Petersburg - 13.9.2019

Test: Abundance Trends

Nieva & Przybilla (2012)

Quantitative Spectroscopy with Little Systematics

Diagnostics

Quantitative Spectroscopy with Little Systematics

Diagnostics

UV Spectral Range with HST/STIS

• ~10⁵ lines: ~60 elements, 200+ ionization stages

• OB stars: UV ~50% of lines in NLTE, rest LTE - atomic data missing, high-quality observations

Extending the elemental coverage in the UV

															Sc	chaffer	nroth (2015)
1 H 1.01 ^{Hydrogen}																		2 He 4.00 Helium
3 т:	4 D o			Z	abol			in	ncluded in	LTE			5 D	6 C	7 N	8	9 E	10 NI o
	Be			Ato	mic			in	ncluded in	NLTE			10.81	12.01	1N 14.01	16.00	F	INC 20.18
0.94 Lithium	9.01 Beryllium	Weight Element Name								Boron	Carbon	Nitrogen	Oxygen	Fluorine	20.18 Neon			
11	12												13	14	15	16	17	18
Na	Mg												Al	Si	Р	S	Cl	Ar
22.99	24.31												26.98	28.09	30.97	32.07	35.45	39.95
Sodium	Magnesium 20		91	99	92	94	95	26	27	28	20	20	Aluminum 21	Silicon	Phosphorus 22	Sultur 24	25	Argon 26
IJ K			Se		25 V	C _n	25 Mn	Fo		NI	²³ Cu	Zn	^{on} Co	° ² Co	33 A c	54	B _n	JU IV IV
N 30.10	40.08		3C 44.96	47.87	V 50.94	52.00	1VIII 54 04	55.85	58.03	1N1 58.60	63.55	65 30	60 72	72.61	AS 74.02	5e 78.96	DF 79.90	83.80
Potassium	Calcium		Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
\mathbf{Rb}	\mathbf{Sr}		Y	\mathbf{Zr}	Nb	Mo	Tc	Ru	$\mathbf{R}\mathbf{h}$	Pd	Ag	Cd	In	Sn	\mathbf{Sb}	Te	Ι	Xe
85.47	87.62		88.91	91.22	92.91	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Rubidium	Strontium		Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
55	56 D		71 T	72	73	74	75 D	76	77	78 Di	79	80 TT	81	82 Dl	83 D'	84 D	85	86
US	- Ва 197-00	57-70	Lu 174.07	HI	100.07	W 192.94	Re	US	100.00	Pt	Au	ng	11	PD 207.0	B1	P0 (200)	At (210)	(222)
Caesium	Barium	Ŧ	Lutetium	Hafnium	Tantalum	183.84 Tungsten	Rhenium	Osmium	192.22 Iridium	Platinum	Gold	200.59 Mercury	204.38 Thallium	207.2 Lead	208.98 Bismuth	(209) Polonium	(210) Astatine	(222) Radon
87	88		103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
\mathbf{Fr}	Ra	89-102	\mathbf{Lr}	Rf	Db	\mathbf{Sg}	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Fl	Uup	Lv	Uus	Uuo
(223)	(226)	**	(262)	(261)	(262)	(266)	(264)	(269)	(268)	(271)	(272)	(283)	[286]	(287)	[288]	(289)	[294]	(293)
Francium	Radium		Lawrencium	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadtium	Roentgenium	Copernicium	Ununtertium	Flerovium	Ununpentium	Livermorium	Ununseptium	Ununoctium

	57	58	59	60	61	62	63	64	65	66	67	68	69	70
* Lanthanoids	La	Ce	\mathbf{Pr}	Nd	Pm	\mathbf{Sm}	Eu	Gd	Tb	Dy	Ho	\mathbf{Er}	Tm	Yb
	138.91	140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium
	89	90	91	92	93	94	95	96	97	98	99	100	101	102
** Actinoids	Ac	\mathbf{Th}	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	(227)	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)
					· · · · /	· · ·	· · · /	· · · /	· · · /	· · · /	· · · ·	· · · · /	· · · · /	· · · · /

Quantitative Spectroscopy using NLTE Diagnostics

using high-quality spectra, robust analysis methodology & comprehensive model atoms

getting rid of systematics !!!

- ionization equilibria T_{eff} elements: e.g. He I/II, C II/III/IV, O I/II, Ne I/II, Si II/III/IV, S II/III, Fe II/III Δ T_{eff} / T_{eff} ~ 1%
- Stark broadened hydrogen lines → log g
 △ log g ~ 0.05...0.10 (cgs)
- microturbulence, helium abundance, metallicity

+ other constraints, where available: SED's, near-IR, ...

abundances: Δlogε ~ 0.05...0.10 dex (1σ-stat.) usually: factor ~2
 Δlogε ~ 0.07...0.12 dex (1σ-sys.) ???

Chemical composition of the solar neighborhood

Chemical composition of interstellar dust

• chemical homogeneity of ISM and OB-stars

difference ----- dust composition

homogeneity over hundreds of parsecs: highly efficient mixing

Mixing with CNO-processed matter

- theory predicts very tight relation in N/C vs. N/O diagram
 - nuclear path of the CNO cycles (Przybilla et al. 2010; Maeder et al. 2014)

Comparison CAS & Solar Standard

Element	CAS	Sun (photospheric) Asplund et al. (2009)	∆(CAS-⊙
С	8.33 <u>+</u> 0.04	8.43 <u>+</u> 0.05	-0.10
Ν	7.79 <u>+</u> 0.04	7.83 <u>+</u> 0.05	-0.04
0	8.76 <u>+</u> 0.05	8.69 <u>+</u> 0.05	0.07
Ne	8.09 <u>+</u> 0.05	[7.93 <u>+</u> 0.10]	0.16
Mg	7.56 <u>+</u> 0.05	7.60 <u>+</u> 0.04	-0.04
AI (prelim.)	6.28 <u>+</u> 0.07	6.45 <u>+</u> 0.03	-0.17
Si	7.50 <u>+</u> 0.05	7.51 <u>+</u> 0.03	-0.01
S (prelim.)	7.16 <u>+</u> 0.06	7.12 <u>+</u> 0.03	0.04
Ar (prelim.)	6.50 <u>+</u> 0.06	[6.40 <u>+</u> 0.13]	0.10
Fe	7.52 <u>+</u> 0.03	7.50 <u>+</u> 0.04	0.02

- Sun a bit more metal rich according to Caffau et al. (2010)
- confirmation of CAS from a few BA-type supergiants
- surprising good agreement ... suspicious
- Protosun is even more metal rich

... no GCE over past 4.56 Gyrs ?

Cosmic abundances

Genesis of Heavy Elements over Cosmic History

nnsbruck

Cosmic abundances

Genesis of Heavy Elements over Cosmic History

St. Petersburg - 13.9.2019

Cosmic abundances

Genesis of Heavy Elements over Cosmic History

St. Petersburg - 13.9.2019

Place of birth of the solar system

- method: chemical tagging orbit tracing not working: radial migration
- available data: CAS, present-day abundance gradients,

solar abundances (4.56 Gyr)

Notes. ^(a) Applying values from Table 5 of AGSS09, based on GCE models of Chiappini et al. (2003); ^(b) Esteban et al. (2005); ^(c) Carigi et al. (2005); ^(c) Carigi et al. (2005); ^(c) Cascutti et al. (2007), based on Cepheid observations of Andrievsky et al. (2004, and references therein); ^(e) a slightly steeper – though compatible – gradient, by $-0.044 \pm 0.010 \text{ dex kpc}^{-1}$, is given by Carigi et al. (2005).

Nieva & Przybilla (2012)

Place of birth of the solar system

Galactochemical evolution over cosmic history & Galactic abundance gradients

> radial migration of Sun in Milky Way disk birth radius of Sun at R_g~5-6 kpc

Summary

- early B-type stars excellent probes for spatial distribution of chemical abundances @ present day
- •early B-stars in solar neighbourhood chemically hogeneous

---- Cosmic Abundance Standard

- similarities and differences with respect to solar standard
 chemical tagging of the Sun's birth radius
- many applications, e.g.
 - quantifying depletion onto dust grains in the ISM
 - spatial distribution of elemental abundances in Milky Way
 - initial composition for modelling stellar evolution
 - boundary condition for GCE modelling

