Origin of elements and chemistry in outer space

- United Nations Educational, Scientific and Cultural Organization
- International Year
 of the Periodic Table
 of Chemical Elements

100 Years: Under One Sky

Ewine F. van Dishoeck Leiden University, the Netherlands President International Astronomical Union XXI Mendeleev congress, September 10 2019, St Petersburg

Where do we come from?

Starry night Van Gogh Milky Way dreaming <u>Au</u>stralia aboriginal art

From the Big Bang to supernovae

In the beginning there was..... Hydrogen

I, a universe of atoms an atom in the universe.

Richard P. Feynman

Big Bang production elements

UM

d

- Expansion Universe => cooling of quark soup so that protons and neutrons can be formed
 - ~1 minute after Big Bang
- Big Bang only produces H, D, He and some Li, Be

Production D and ³He

Production ³He and ⁴He

Expansion: Abundances 'frozen in'

wikipedia

Thereafter.... Formation first structures in Universe

Cosmic microwave background

Tiny fluctuations \rightarrow seeds of future structures

COBE, WMAP and Planck satellites

Formation galaxies and stars

Illustris hydrodynamical cosmological simulation

The first billion years

Fluctuations in primordial soup

The illumination era First stars

Today

The dark ages: Giant H clouds

Formation of galaxies

Nucleosynthesis in stars enriches Universe in heavy elements

H. Jacobson

See symposium on 'The Periodic Table through Space and Time'

Analysis of meteorites

Primitive meteorites that underwent little chemical modification provide the most accurate information on the chemical composition of the Solar System

Carbonaceous chondrites, such as Allende, Murchison, Renazzo,

Solar System and cosmic abundances

In 1956, Harold Urey and Hans Suess, publish a famous table of *isotopic* cosmic abundances

Slides M. Lugaro

...from meteorites to nuclear physics!

...from meteorites to nuclear physics!

... from meteorites to nucleosynthesis!

Production of Iron and Titanium

Supernova Remnant Cas A

Making Gold in the Universe!

Neutron-neutron star merger LIGO-VIRGO collaboration 2017

GW 170817 produced several oceans of gold

Chemistry in Space The Astronomers' Periodic Table

B. McCall 2001

Orion nebula: nursery of thousands of young stars and chemical factory

Red=ionized gas (H⁺) Too hot for molecules

Hubble Space Telescope NASA/ESA

Stars do not have eternal life: they are born and they die Victor Ambartsumian (1908-1996)

Molecules are formed in dark clouds

HST Carina nebula

Clouds consist of gas and small dust grains ('sand')

Cold dark clouds

Mostly H₂

- Dust grains (1% by mass)
 - Silicates, carbonaceous 0.1 μm
- Temperature: ~10 K
- Density: $\sim 10^4$ cm⁻³
- Ionization fraction ~10⁻⁷
- Collision time: ~once per month
- Chemical time: ~10⁵ yr
- Cosmic rays, UV

Unique physical and chemical laboratory!

From elements to molecules: water as example

Formation of water on dust grains

'Water on Earth is older than the Sun'

I. Cleeves et al.

Based on laboratory experiments in Leiden, Paris, Japan Cuppen et al. 2010

Lifecycle of elements and molecules

Atacama Large Millimeter Array (ALMA)

54x12m + 12x7 m antennas

0.3-3 millimeter 84-950 GHz

ALMA observes cold dust (continuum) and myriad of molecules (pure rotational lines)

Chemical factory in space!

Molecules are branching out

Such side chains are characteristics of amino acids

ALMA Belloche et al. 2014

First chiral molecule

McGuire et al. 2016 GBT, ATCA

Very large carbonaceous molecules

Polycyclic Aromatic Hydrocarbons

The interstellar ice cocktail

Atoms and molecules freeze-out onto cold dust grains \Rightarrow hydrogenation, e.g. $O \rightarrow H_2O$

Leiden laboratory for Astrophysics

H. Linnartz

Surface chemistry dominates during star formation

Formation new star and planetary system

Collapse of cloud

20000 AU

Gas and ice from collapsing cloud is transported to disk

New era of observational planet formation

Chemical complexity on solar system scales IRAS16293-2422

Source B 1 L_{Sun} Face-on disk

Protostellar Interferometric Line Survey (PILS)

Jes Jørgensen & the PILS team

Source A 18 L_{Sun} Inclined disk d=140 pc 60 AU

ALMA: 0.4-3 mm continuum

Full spectral survey of a young disk: IRAS 16293–2422B

Complex molecules on disk scales

Methyl isocyanate 'Prebiotic' molecule

Ligterink et al. 2017, Maríin-Domenéch et al. 2017

Acetamide (but no glycine yet) Ligterink et al. 2018

Lykke et al. 2017

How far can complexity go?

Lab experiments starting from CO hydrogenation

Reactions proceed already at 15 K, without need for heating or UV! Can even make glycerol and real sugars! (Fedoseev et al. 2017)

From icy grains to planetesimals to embryos to planets

Planetary embryos Lunar (1 AU)-to-Mars (2 AU) sized

J. Lunine

Rosetta mission to comet 67P 12 year journey through our solar system

Comet 67P/Churyumov-Gerasimenko

Young disk – comet comparison

Young disk: observe just sublimated ices
Comet: measure coma molecules *in situ*

Drozdovskaya et al. 2019 Altwegg et al. 2019

Origin water and organics on Earth?

ESA/NASA Herschel-HIFI Hartogh et al.

Similar ratio: HDO/H₂O=1.5 10⁻⁴

Icy planetesimals delivered water?

Next frontier: search for life on the nearest planets

Anglada-Escudé et al. 2016

With ELTs we can answer the question: 'Are we alone?'

Biomarkers

Gillon et al. 2017

d

3 Earth-like planets in habitable zone

where water is liquid

С

O₂, O₃, CH₄, N₂O, CH₃Cl,

0017

Looking back at Earth from beyond Saturn *Pale Blue Dot*

Astronomy provides perspective, modesty, tolerance

Congratulations to IUPAC from the IAU!

'We are all world citizens under the same sky'

>4000 events in 100 countries: www.iau-100.org

Celebrate a century of astronomical discoveries, technological progress and cultural impact

Thanks for your attention!

Acknowledgments

- Figures and movies from:
 - European Southern Observatory
 - www.eso.org
 - NASA/Hubble Space Telescope <u>hubblesite.org</u>
 - NASA/Spitzer Space Telescope <u>www.spitzer.caltech.edu</u>
 - ESA/Herschel Space Observatory
 - herschel.esac.esa.int
 - Atacama Large Millimeter array
 - <u>www.almaobservatory.org</u>
 - ESA Rosetta mission to comet <u>sci.esa.int/rosetta/</u>