<u>Massive Stars: Evolution, Explosion and</u> <u>Nucleosynthesis</u>

<u>Marco Limongi</u>

INAF – Osservatorio Astronomico di Roma, ITALY Kavli IPMU, University of Tokyo, JAPAN marco.limongi@inaf.it

in collaboration with

Alessandro Chieffi

INAF – Istituto di Astrofisica e Planetologia Spaziali, Italy Monash Centre for Astrophysics, Australia alessandro.chieffi@inaf.it

Why do we care about Massive Stars?

Massive stars play e fundamental role in the evolution of the Universe

- Produce of most of the heavy elements (especially those necessary to life)
- \bullet Light up regions of stellar birth \rightarrow induce star formation
- Contribute to the production of Neutron Stars and Black Holes
- Constitute a natural laboratory for the study of the physics of neutrinos
- Are sources of Gravitational Waves
- Are the progenitors of long Gamma Ray Bursts

A good knowledge of the evolution of these stars is required in order to shed light on many astrophysical topical subjects

Presupernova Evolutions

INITIAL MASSES: 13, 15, 20, 25, 30, 40, 60, 80 and 120 M_{\odot}

INITIAL COMPOSITIONS: [Fe/H]=0 , Z=1.345 10⁻² Asplund+ 2009

[Fe/H]=-1,	Z=3.236 10 ⁻³	Scaled solar Fe/Fe $_{\odot}$ =0.1,0.01,0001
[Fe/H]=-2,	Z=3.236 10 ⁻⁴	except
[Fe/H]=-3,	Z=3.236 10 ⁻⁵	[C/Fe]=0.18
		[O/Fe]=0.47
		[Mg/Fe]=0.27
		[Si/Fe]=0.37
		[S/Fe]=0.35
		[Ar/Fe]=0.35
		[Ca/Fe]=0.33
		[Ti/Fe]=0.23
		(Cavrel+ 2004 and Spite+ 2005)

INITIAL EQUATORIAL VELOCITIES: 0, 150, 300 km/s

 L 2017 Handbook of Supernovae (Springer) – LC 2018 ApJS (Astro-ph)

Presupernova Evolutions

FRANEC - Frascati RAphson Newton Evolutionary Code 6.0

- FULL COUPLING of all EQUATIONS
- **INCLUSION OF ROTATION:**
 - Shellular Rotation (Meynet & Maeder 1997)
 - Transport of Angular Momentum due to shear instabilities and meridional circulation (Advection/Diffusion equation, Meynet & Maeder 2000)
 - Coupling of Rotation and Mass Loss

- MASS LOSS:

INAF INAF INTUTO NAZIONALE NOT ASTROPHYSICS

- OB: Vink et al. 2000,2001
- RSG: de Jager 1988+Van Loon 2005 (Dust driven wind)
- WR: Nugis & Lamers 2000
- Supra Eddington Mass Loss
- Mechanical mass loss due to rotation

- TWO NUCLEAR NETWORKS:

- 220 iso (n-²⁰⁹Bi) H/He Burning
- 338 iso (n- ²⁰⁹Bi) Advanced Burning

$\frac{\partial P}{\partial M} = -\frac{GM}{4\pi R^4} f_P$	FRANEC 6.0
$\frac{\partial R}{\partial M} = \frac{1}{4\pi\rho R^2}$ $\frac{\partial T}{\partial M} = -\frac{GMT}{4\pi R^2 P} \nabla \frac{f_T}{f_P}$ $\frac{\partial L}{\partial M} = \varepsilon_n + \varepsilon_g + \varepsilon_\nu$ $\frac{\partial Y_i}{\partial t} = \left(\frac{\partial Y_i}{\partial t}\right)_{\text{nuc}} + \frac{\partial}{\partial m} \left[\left(4\pi\rho r^2\right)^2 \left(D_{\text{mix}}\right)\right]$	FULL COUPLING • Physical Struct • Nuclear Burnin • Chemical Mix semiconvectio $+ D_{semi} + D_{rot}$
$\rho \frac{d}{dt} \left(r^2 \omega \right) = \frac{1}{5r^2} \frac{\partial}{\partial r} \left(\rho r^4 \right)$ Meridional Circu	$\left(\frac{1}{r^2} \frac{\partial}{\partial r} \right) + rac{1}{r^2} rac{\partial}{\partial r} \left(\frac{\partial}{\partial r} \right)$

G of:

- ure
- ng
- ing (convection, n, rotation)

ar Instabilities

IPMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSI

(CL 2013, ApJ, 764, 21; LC 2018, ApJS)

Solar Metallicity non Rotating Models: Presupernova Evolution

Solar Metallicity non Rotating Models: Presupernova Evolution

Solar Metallicity non Rotating Models: Expected Final Fate

Solar Metallicity non Rotating Models: Expected Final Fate

L_{max} for SNIIP progenitors

Solar Metallicity non Rotating Models: Nature of the Remnants

Solar Metallicity non Rotating Models: Expected Final Fate

L_{max} for CCSN progenitors

Solar Metallicity non Rotating Models: Expected Final Fate and Remnants

The Progenitors of Core Collapse Supernovae

Solar Metallicity non Rotating Models: Composition of the Ejecta

- The elements Ne-Ca (synthesized only by massive stars) are coproduced with O. Some of them underproduced by more than a factor of 2 (Cl K) \rightarrow other sources
- The iron peak elements Ti-Ni are underproduced compared to O. SNIa fill the gap
- The elements Cu-Zr (weak component, synthesized mainly by massive stars) are coproduced with O. Kr-Rb slightly underproduced → AGB fill the gap
- Elements heavier than Zr (main+strong component produced only by AGB stars) not produced

IPMU INSTITUTE FOR TH

Low Metallicity non Rotating Models: Presupernova Evolution

Mass loss reduces dramatically as the metallicity decreases $\dot{M} \sim Z^{0.85}$

* INAF BITUME MAZZYMALE HOTYDSHADSHUDJEZE

TPMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSI

Low Metallicity non Rotating Models: Presupernova Evolution

Solar Metallicity non Rotating Models: Nature of the Remnants

TPMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Non Rotating Models: Presupernova Evolution, Final Fate and Remnants

Non Rotating Models: Presupernova Evolution, Final Fate and Remnants

MU INSTITUTE FOR THE PHYSICS ANI MU MATHEMATICS OF THE UNIVERSI

Low Metallicity non Rotating Models: Composition of the Ejecta

- Alpha elements show (as expected) the typical behavior of primary nuclei (negligible dependence on the initial metallicity)
- The odd elements (from N to Sc), on the contrary, show a typical secondary behavior

IPMU INSTITUTE FOR THE PHYSICS A

• All the heavy elements above Fe-peak are produced as secondaries (Zn-Zr start being produced above metallicity [Fe/H]=-1, the others are never produced)

Massive Stars: The Impact of Rotation

Increase of mass loss (Dust Driven Wind – Eddington Limit)

Figure 14. Evolutionary tracks of all our models on the HR diagram. The various symbols mark the central He-ignition (green triangles), the central He-exhaustion (red dots), and the final position at the presupernova stage (black star).

Massive Stars: The Impact of Rotation

Increase of CO mass (rotation driven mixing) \rightarrow reduction of PPISN limit

Figure 17. The four panels show, for each initial metallicity, the $M_{\rm CO}-M_{\rm INI}$ relation obtained for the nonrotating (black) and the rotating cases, 150 km s⁻¹ (blue) and 300 km s⁻¹ (red), as solid lines (left *Y*-axis). The dashed lines show the per cent difference (DM/M) between rotating and nonrotating $M_{\rm CO}$ (right *y*-axis).

IPMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Low Metallicity Rotating Models: Nature of the Remnants

* INAF BYTEMERNARDYALE NATYONAL NATIONAL

IPMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Massive Stars: Presupernova Evolution, Final Fate and Remnants

INAF
 BYTINTE MARENALE
 MOR 2011/MORENALE

All the models and yields available at the website: http://orfeo.iaps.inaf.it

FRU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Rotating Models: Composition of the Ejecta

- The trends of N and F with the initial metallicity turn from a typical secondary to a typical primary behavior
- The production of s-process elements is substantially enhanced with increasing the initial rotation velocity
- Large overproduction with respect to O (especially the s-only isotopes) at metallicities -2<[Fe/H]<0
- The yields of almost all the elements are considerably increased in rotating models due to the larger He cores induced by the rotation driven mixing

• ¹²C synthesized in the He convective core diffuses up to the tail of the H-burning shell

- ¹²C synthesized in the He convective core diffuses up to the tail of the H-burning shell
- ¹²C is converted into CNO nuclei whose abundances are enhanced (the most abundant being ¹⁴N)

- ¹²C synthesized in the He convective core diffuses up to the tail of the H-burning shell
- ¹²C is converted into CNO nuclei whose abundances are enhanced (the most abundant being ¹⁴N)
- The fresh CNO nuclei, and in particular ¹⁴N, plus fresh He, are brought back toward the center.

- ¹²C synthesized in the He convective core diffuses up to the tail of the H-burning shell
- ¹²C is converted into CNO nuclei whose abundances are enhanced (the most abundant being ¹⁴N)
- The fresh CNO nuclei, and in particular ¹⁴N, plus fresh He, are brought back toward the center.
- The ¹⁴N that diffused back to the center is quickly converted into ²²Ne that becomes an efficient primary neutron source → strong s-process nucleosynthesis activated

- ¹²C synthesized in the He convective core diffuses up to the tail of the H-burning shell
- ¹²C is converted into CNO nuclei whose abundances are enhanced (the most abundant being ¹⁴N)
- The fresh CNO nuclei, and in particular ¹⁴N, plus fresh He, are brought back toward the center.
- The ¹⁴N that diffused back to the center is quickly converted into ²²Ne that becomes an efficient primary neutron source → strong s-process nucleosynthesis activated
- Formation of a CNO (¹⁴N, ¹³C, ¹⁵N, ¹⁷O) pocket in the radiative layers of the He core

CO Core	He radiative core	H-rich
	CNO pocket	radiative
	(¹⁴ N, ¹³ C, ¹⁵ N, ¹⁷ O)	zone

- ¹²C synthesized in the He convective core diffuses up to the tail of the H-burning shell
- ¹²C is converted into CNO nuclei whose abundances are enhanced (the most abundant being ¹⁴N)
- The fresh CNO nuclei, and in particular ¹⁴N, plus fresh He, are brought back toward the center.
- The ¹⁴N that diffused back to the center is quickly converted into ²²Ne that becomes an efficient primary neutron source \rightarrow strong s-process nucleosynthesis activated
- Formation of a CNO (¹⁴N, ¹³C, ¹⁵N, ¹⁷O) pocket in the radiative layers of the He core
- The ¹³C and ¹⁴N engulfed by the He convective shell activate a strong ¹⁹F production

Rotating Models: Composition of the Ejecta

- The trends of N and F with the initial metallicity turn from a typical secondary to a typical primary behavior
- The production of s-process elements is substantially enhanced with increasing the initial rotation velocity
- Large overproduction with respect to O (especially the s-only isotopes) at metallicities -2<[Fe/H]<0
- The yields of almost all the elements are considerably increased in rotating models due to the larger He cores induced by the rotation driven mixing

OBSERVATIONAL REQUIREMENTS

- Primary behavior of N (at the lowest metallicities)
- Prevention of an overproduction of the s-only nuclei at metallicities -2<[Fe/H]<-1

IPMU INSTITUTE FOR THE PHYSICS AN MATHEMATICS OF THE UNIVERS

Rotating Models: Composition of the Ejecta

Initial Distribution of Rotation Velocities (IDROV) Gaussian with $\langle v \rangle$ and σ

- Alpha elements behave as primaries
- N shows a negligible dependence on the initial metallicity (primary)
- Elements between Zn and Zr display a secondary like behavior and always underproduced compared with O. At solar metallicity almost coproduced with O
- Elements heavier than Zr behave like primary elements but their overproduction remains always lower than that of O

IPMU INSTITUTE FOR THE PHYSICS A

In the NON ROTATING case as the metallicity decreases we find:

- M>25 M $_{\odot}$ \rightarrow Failed Supernovae
- Reduction of RSGs and WRs
- No Type Ib SNe expected for [Fe/H]<0
- Reduction of minimum mass for PPISN
- Increase of the remnant masses

All the models and yields available at the website: http://orfeo.iaps.inaf.it

INAF

ISTITUTO NAZIONAL DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS In the NON ROTATING case as the metallicity decreases we find:

- M>25 M $_{\odot}$ \rightarrow Failed Supernovae
- Reduction of RSGs and WRs
- No Type Ib SNe expected for [Fe/H]<0
- Reduction of minimum mass for PPISN
- Increase of the remnant masses

With the inclusion of rotation ROTATION we find:

- M>25 M $_{\odot}$ \rightarrow Failed Supernovae
- Increase of RSGs and WRs
- Few Type Ib SNe for fast rotators
- Reduction of minimum mass for PPISN
- Decrease of the remnant masses

In the NON ROTATING case:

- Alpha elements show the typical behavior of primary nuclei (negligible dependence on the initial metallicity)
- The odd elements (from N to Sc), on the contrary, show a typical secondary behavior
- All the heavy elements above Fe-peak are produced as secondaries (Zn-Zr start being produced above metallicity [Fe/H]=-1, the others are never produced)

In the NON ROTATING case:

- Alpha elements show the typical behavior of primary nuclei (negligible dependence on the initial metallicity)
- The odd elements (from N to Sc), on the contrary, show a typical secondary behavior
- All the heavy elements above Fe-peak are produced as secondaries (Zn-Zr start being produced above metallicity [Fe/H]=-1, the others are never produced)

In the ROTATING case:

- The trends of N and F with the initial metallicity turn from a typical secondary to a typical primary behavior
- The production of s-process elements is substantially enhanced with increasing the initial rotation velocity
- Large overproduction with respect to O (especially the s-only isotopes) at metallicities -2<[Fe/H]<0
- The yields of almost all the elements are considerably increased in rotating models due to the larger He cores induced by the rotation driven mixing