Corinne Charbonnel

Multiple stellar populations in globular clusters

Constraints from nuclear physics and the formation scenarios

Main collaborators in the field N.Prantzos, M.Krause, M.Gieles, D.Schaerer N.Bastian, F.Primas, K.Lind T.Decressin, W.Chantereau, Y.Wang, T.Dumont

Multiple stellar populations in globular clusters

Why do we care?

Aggregates of $\sim 10^5 - 10^7$ stars packed into a small volume $\sim (10 \text{ pc} - 30 \text{ pc})^3$

UNIVERSITÉ

DE GENÈVE

Corinne Charbonnel

Milky Way GCs range among the oldest objects of the Universe (11 to 13.5 Gyr for the oldest ones) → Independent probe (vs CMB) of the **age of the Universe**

GCs – Tools for cosmology

Milky Way GCs range among the oldest objects of the Universe (11 to 13.5 Gyr for the oldest ones) → Independent probe (vs CMB) of the **age of the Universe**

GCs are potential important contributors to the **reionization** process at high-z

e.g. Ricotti (02) Schaerer & Charbonnel (11)

GCs – Guides to galaxies

Intrinsically bright objects that can be observed at large distances in MW and external galaxies

Found in galaxies of all Hubble types

- # Very similar \forall the parent galaxy
 - \rightarrow Common path in the early phases of galaxy evolution
- # Specific frequency (the number of GCs in a galaxy divided by the galaxy's luminosity,) depends on galaxy morphology (higher in ellipticals than in spirals)
- # Observed correlation between the number of GCs and the virial mass of their host dark matter halos
 (∀ galaxy morphology) → Suited for high-precision determination of M_{VIR}
 → Dynamical tracers of the luminous and dark matter distribution at large (kpc) scales

Milky Way GCs : Old, age spread ~ 25 %

GCs – Guides to cluster

formation

GCs are not all uniformly old

LMC, SMC, M31 and M33 contain intermediate-age and young GCs – YMSC

Krause, Charbonnel et al. (16)

Milky Way GCs :Old, age spread ~ 25 %

GCs are not all uniformly old

LMC, SMC, M31 and M33 contain intermediate-age and young GCs - YMSC

Evidence for continued formation of very massive clusters in Local Group galaxies, and in ongoing mergers and starburst galaxies

 \rightarrow Clues on star formation in various environments and at different redshifts

 \rightarrow Are such forming and YMSC the modern counterparts of the **proto-GCs**?

GCs – Guides to cluster formation

GCs – Guides to stars

Contain ~ $10^5 - 10^7$ stars packed into a small volume ~ $(10 \text{ pc} - 30 \text{ pc})^3$, with the same [Fe/H] abundance (except Ω Cen and a few (rare) others); broad [Fe/H] range (~ -2.3 to ~ -0.3) from cluster to cluster

Host a wide variety of interesting and unusual objects (millisecond pulsars, blue stragglers,

low-mass X-ray binaries, ...)

→ Natural laboratories to study **stellar evolution (and formation!)**

Nuclear physics laboratories

GC studies bring insight on cosmology, galaxy formation and evolution, stellar dynamics, stellar evolution.

But their formation mechanism and evolution are still poorly understood

GCs – Formation

Multiple stellar populations in globular clusters

Spectroscopy and photometry Towards a new paradigm

GC = single, coeval stellar population born with homogeneous chemical composition

Classical paradigm

Most GGCs are mono-metallic

No internal scatter in alpha-elements (Si, Ca) neutron-capture elements (Ba, La, Eu) iron-peak elements (Bi, Cu, Mn)

→ No self-enrichment by SNe products and r/s processes GC = single, coeval stellar population born with homogeneous chemical composition

Rare exceptions: The most massive GGCs ΩCen, M54, M22, NGC 3201, NGC 1851

Classical paradigm

Most GGCs are mono-metallic

No internal scatter in alpha-elements (Si, Ca) neutron-capture elements (Ba, La, Eu) iron-peak elements (Bi, Cu, Mn)

→ No self-enrichment by SNe products and r/s processes GC = single, coeval stellar population born with homogeneous chemical composition

MSPs – Photometric evidence

He 🞵

NGC2808

→bluer population

Piotto et al. (15) HST UV Legacy Survey of 57 Galactic Globular Clusters

6

Combination of

HST filters

sensitive to

Helium

Δ

2

MSPs – Spectroscopic clues

 Large star-to-star abundance variations of light elements C, N, O, Na, Mg, Al, Li, F (Si) Lick-Texas group, Carretta *et al.* (09, 10, +), Lind *et al.* (09, 11), Gratton *et al.* (12 ARAA), Marino ++, many others

✓ C-N, O-Na, Mg-Al(Si) anticorrelations

✓ Li-Na, F-Na anticorrelations

!! From the turnoff to the RGB (and AGB)

Shape and extension vary – **Stochasticity**? Bastian et al. (15) [Na/Fe] 0.5 O-depleted 0 Na-enriched -NGC288 -NGC1904 FNGC2808 -NGC3201 GC104 -0.52^d population [Na/Fe] 0.5 0 Ŧ +"Field" O and Na: NGC6171 -NGC5904 NGC6121 -NGC6218 GC4590 -0.5Formed out of original GC material [Na/Fe] 0.5 1st population 0 +‡NGC6388 NGC6397 =NGC6441 NGC6752 GC6254 -0.5Field [0/Na]=0.6 [Na/Fe] 0.5 0 Ψ ÷ ENGC6809 -NGC7078 -NGC6838 NGC7099 -0.50 0 - 1 0 1 - 10 1 - 11 - 10 MW GCs with [O/Fe][O/Fe] [0/Fe][0/Fe][0/Fe] \succ -2.16 ≤ [Fe/H] ≤+0.07 Carretta et al. (10, VII)

O-Na anticorrelation

> a large range of physical properties (\neq total M, concentration, density, HB morphology)

disk and halo population

O-Na anticorrelation

An ubiquitous property above a mass threshold

O-Na anticorrelation

Local Group

3 old and metal-poor LMC clusters: NGC 1786, 2210, 2257 Individual star spectroscopy FLAMES@VLT Mucciarelli *et al.* (09) GCs in LG galaxies Integrated-light spectra HIRES@Keck – UVES@VLT Larsen *et al.* (18)

ELTs: A unique tool to look at abundance properties of resolved stellar populations in GCs of the Local Group

Mg-Al anticorrelation

Pancino et al. (17)

Gaia-ESO Survey

Mg-Al anti-correlation in iDR4 globular clusters

UVES – GIRAFFE – UVES literature

Increasing metallicity from left to right and from top to bottom

Mg-Al anticorrelation

- \clubsuit not seen in all GCs
- more extended in the more massive ••• and/or more metal-poor GCs

Multiple stellar populations in globular clusters

Nucleosynthesis and early chemical evolution

H-burning through CNO, NeNa, MgAl (AlSi)

C-N, O-Na, Mg-Al (Si)

anticorrelations

Denissenkov & Denissenkova (90) Langer, Hoffman & Sneden (93) Arnould, Goriely & Jorissen (99) Prantzos, Charbonnel & Iliadis (07, 17)

$T \sim 72$ to 78 MK \rightarrow

$$T \ge 15 \text{ x } 10^{6} \text{ K} : \text{ CN}$$

$$T \ge 25 \text{ x } 10^{6} \text{ K} : \text{ CNO}, \ {}^{22}\text{Ne} \rightarrow {}^{23}\text{Na}$$

$$T \ge 40 \text{ x } 10^{6} \text{ K} : \text{ CNO}, \ {}^{20}\text{Ne} \rightarrow {}^{23}\text{Na}$$

$${}^{25,26} \text{ Mg} \rightarrow {}^{26}\text{Al}, {}^{27}\text{Al}$$

$$T \ge 70 \text{ x } 10^{6} \text{ K} : \ {}^{24}\text{Mg} \text{ (and } {}^{25,26}\text{ Mg}) \rightarrow {}^{26}\text{Al}, {}^{27}\text{Al}$$

$$T \ge 80 - 90 \text{ x } 10^{6} \text{ K} : \ {}^{27}\text{Al} \rightarrow {}^{28}\text{Si}$$

$${}^{23}\text{Na}$$

200 Main Sequence $\widehat{\underline{\mathbb{S}}}_{160}^{180}$ Red Giant - Tip Red Giant - Clump AGB - Bottom of **Convective Envelope** \rightarrow 2P stars born out of material polluted by hot H-burning ashes of Т more massive, short-lived 1P stars °⊖100 ("polluters") Temperature 80 60 40 Low-mass GCs we observe today: M(turnoff) ~ 0.8 M $_{\odot}$ 20 H-burning T \leq 25 MK 10³ 100 10 10^{4} Stellar Mass (M_o)

H-burning temperature in stars

Prantzos, Charbonnel & Iliadis (17)

Second population stars

- ✓ C-N, O-Na, Mg-Al(Si) anticorrelations
 H-burning via CNO, NeNa, MgAl @ ~ 75MK
 in first population short-lived and massive stars (polluters)
- ✓ LiBeBF

H-burning ashes diluted with pristine gas

The case of NGC 2808

Data from Carretta (14,15) & Mucciarelli et al. (15)

C-N, O-Na, Mg-Al anticorrelations He enrichment (CMD) Li-Na (F-Na) anticorrelations

H-burning via CNO, NeNa, MgAl @ ~ 75MK Modest He enrichment H-burning ashes mixed with pristine gas

C-N, O-Na, Mg-Al anticorrelations He enrichment (CMD) Li-Na (F-Na) anticorrelations [(C+N+O)] ~ constant [Fe/H] ~ constant

H-burning via CNO, NeNa, MgAl @ ~ 75MK Modest He enrichment H-burning ashes mixed with pristine gas

No recycling of He-burning products

No recycling of supernovae ejecta, except in some rare (most massive) cases (e.g., Ω Cen or M22)

Multiple stellar populations in globular clusters

H-burning temperature in stars

Prantzos & Charbonnel (06) Decressin, CC *et al.* (07a,b), Krause, CC *et al.* (12,13)

MS ejecta, O-Na and Mg-Al obtained directly, and no He-burning products

Lifetime $\sim 2 - 5$ Myr

- \rightarrow Before SNe explosion
- \rightarrow Pristine gaz is still present
- → Formation of 2P stars in the immediate surroundings of the polluter (decretion disk)

Reach Mg-burning temperature for substantial He-enrichment only

In tension with the photometric determination of He enrichment (ΔY between 0.013 and 0.2)

Piotto *et al. (*15) Chantereau, CC, Meynet (15,16,17)

Candidate polluters – FRMS

- \rightarrow Hypernovae? Krause, CC *et al.* (16)
- → Extreme (\geq 80%) SFE?

GCs were 10 – 25 more massive at birth ? Schaerer & Charbonnel (11) Constraints from field stars Martell & Grebel (10), Carretta+(10) In tension with halo/GC populations in dwarf galaxies Larsen *et al.* (12,14)

Non-standard IMF? Prantzos & CC (06)

Supermassive stars

 $\sim 2 \ x \ 10^3 - 2 \ x \ 10^4 \ M_{\odot}$

Denissenkov & Hartwick (14) Denissenkov *et al.* (15) Gieles, Charbonnel *et al.* (18)

High Tc reached at the beginning of the MS \rightarrow Modest He enrichment

CMD $\rightarrow \Delta Y$ between 0.013 and 0.2 $\rightarrow SMS$ best candidate vs He

Dilution curves using yields of $\sim (2 - 3 - 4) \times 10^4 M_{\odot}$

Candidate polluters – SMSs

Multiple stellar populations in globular clusters

A new scenario : Concurrent formation of supermassive stars

and GCs / massive star clusters

Concurrent formation of supermassive stars and globular clusters: implications for early self-enrichment

Mark Gieles^{1*}, Corinne Charbonnel^{2,3}, Martin G.H. Krause⁴, Vincent Hénault-Brunet^{5,6}, Oscar Agertz⁷, Henny J.G.L.M. Lamers⁸, Nathan Bastian⁹, Alessia Gualandris¹, Alice Zocchi^{10,11}, James A. Petts¹

(2018 MNRAS 478, 2461)

SMS – Formation through runaway collisions

Accreting proto-GC: N(accreting proto-stars) Gas inflow $\dot{M} = 10^5 \text{ M}_{\odot}/\text{ Myr}$

(*a*) time 0 : Proto-stellar mass function (Kroupa-like) with a peak mass $m_0 = 0.1 M_{\odot}$

After $t_0 \qquad \dot{m}_{\rm acc,*} \propto m_{0,*}$

@ 5Myr : Mass spectrum (Kroupa-like) with a peak mass $m = 0.6 M_{\odot}$

 $<\dot{m}_{\rm acc}>=0.1~{
m M}_{\odot}$ / Myr Hartmann+16; De Marchi+17; Offner & Chaban 17

$$\dot{M}_{\rm acc} = < \dot{m}_{\rm acc} > N \left(M_{\odot} / Myr \right)$$

> 5Myr : Accretion halted by stellar feedback

(Gieles et al. 18)

SMS – Formation through runaway collisions

Accreting proto-GC: N(accreting proto-stars) Gas inflow $\dot{M} = 10^5 \text{ M}_{\odot}/\text{ Myr}$

 $N = 10^6$ stars

$$\begin{split} \mathbf{M}_{0,\text{cluster}} &= \mathbf{N} \ge m_0 = 10^6 \ge 0.1 = 10^5 \ \mathbf{M}_{\odot} \\ \dot{M}_{\text{acc}} &= < \dot{m}_{\text{acc}} > \mathbf{N} = 0.1 \ge 10^5 \ \mathbf{M}_{\odot}. \ \text{Myr}^{-1} \\ \mathbf{M}_{\text{cluster}} (5 \text{Myr}) &= 6.10^5 \ \mathbf{M}_{\odot} \end{split}$$

Accretion-driven contraction

Angular momentum conservation \rightarrow Cluster contracts as $R_h \propto M^{-3}$ (Bonnell+98)

Relaxation-driven expansion

Binaries dynamically heat the cluster

→ Maximum coalescence rate set by two-body relaxation

(Gieles et al. 18)

Mass-radius relation

$$r_{\rm SMS} = 30 \,\mathrm{R}_\odot \, \left(\frac{m_{\rm SMS}}{100 \,\mathrm{M}_\odot}\right)^\delta$$

$$0 < \delta \lesssim 1$$
 for $m_{\text{SMS}} > 100 \,\text{M}_{\odot}$
 $\delta = 0.5$ for $m_{\text{SMS}} < 100 \,\text{M}_{\odot}$

Highly uncertain (obs of massive stars, and SPH models of stellar collisions) \rightarrow varying δ

Mass loss (wind)

$$\dot{m}_{\rm wind} = A \left(\frac{m_{\rm SMS}}{100\,{\rm M}_\odot}\right)^\eta$$

A = 10⁻⁴ and 10⁻⁵ M_{$$\odot$$} yr⁻¹ (metallicity effect)
 $\eta = 0.75$ and 1.5

Ok with observations of very massive stars (Crowther+10) SPH models of stellar collisions (Lombardi+03; Suzuki+07) SMS models (Denissenkov+15)

Collision rate experienced by the SMS

$$\dot{N}_{\rm coll} = 2\sqrt{2\pi} \left(\frac{m_{\rm SMS} + m}{m_{\rm SMS}}\right)^{1/2} n V_{\rm rms} d^2 \left(1 + \frac{Gm_{\rm SMS}}{dV_{\rm rms}^2}\right) \propto N^{4/3}$$

n : stellar density, V_{rms} : velocity dispersion of the system

$$V_{\rm rms} \simeq \sqrt{GM/(6R_{\rm h})}$$

(Hills & Day 76; Binney & Tremaine 08)

m, r : mass, radius of other stars

d : distance at which a collision occurs $d = r + r_{SMS}$

(Gieles et al. 18)

$\geq 0.1 M_{\text{subtrack}}$ 2. $m_{\rm wind}$

3. Helium abundance relatively low Formation through runaway collisions 05

- 1. $m_{\rm ward}$ SMS
- 2. maximeting protolad.cluster N(proto-stars) $\geq 5 \ge 10^5$ 3. Helium abundance relatively low Stellar collisions $\uparrow \rightarrow$ SMS formation
 - SMS form \rightarrow only in the host massive clusters
 - Abundance anomalies seen only in GCs
 - Maximum SMS mass depends on 🖌 M
 - 3. ΔY typically small, ΔNa typically high ldington
 - 4. Overcome the mass budget problem
 - (Gieles et al. 18)

C.Charbonnel - Mendeleiev- SP20190913

N=10⁶

Super-linear scaling between the mass of the SMS and the mass of the GC

weak wind

2. $m_{\text{wind}} \gtrsim 0.1 M_{\text{scretion}}$

3. Helium abundance relatively low Formation through runaway collisions 05

- 1. $m_{\rm MM} >> n_{\rm SMS}$
- 2. *m*_{Axcinct}ing protol *A*:cluster
 N(proto-stars) ≥ 5 x 10⁵
 3. Helium abundances relatively low Stellar collisions ↑ → SMS formation

weak wind

 $N = 10^{6}$

Super-linear scaling between the mass of the SMS and the mass of the GC

✓ Extent of the Mg-Al anticorrelation increases with M_{cluster}

Conveyor belt

Material processed through SMS (super nuclear reactor)

- \rightarrow Continuous SMS rejunevation
- \rightarrow M_{wind} >> M_{SMS}
 - 1. $m_{
 m wind} >> m_{
 m SMS}$
- ✓ Overcomes the mass budget problem
 → 2No need to lose 1P stars to all of the 1P/2P ratios
 3. Helium abundance relatively low

SMS evolution and wind

Conveyor belt

Ok with He enhancement from HST photometry \checkmark

(Gieles et al. 18)

Accreting cluster with gas inflow

Cluster enrichment by SMSs

(Gieles et al. 18)

Accreting cluster with gas inflow

Strong SMS wind
rich in hot H-burning yields
pollutes the intracluster medium
→ C-N, O-Na, Mg-Al
with low He enrichment

Cluster enrichment by SMSs

(Gieles et al. 18)

Accreting cluster with gas inflow

Strong SMS wind
rich in hot H-burning yields
pollutes the intracluster medium
→ C-N, O-Na, Mg-Al
with low He enrichment

Wind interacts with inflowing gas, cools and accretes on protostars

Dilution with pristine gas \rightarrow Li

Cluster enrichment by SMSs

(Gieles et al. 18)

Cluster enrichment by SMSs

- 1. Anti-correlations: C-N, Na-O, Mg-Al
- \checkmark 2. Both ΔY and f_{poll} correlate with M_{GC}
- 3. ΔY typically small, ΔNa typically high
- 4. Overcome the mass budget problem
- 5. No [Fe/H] spread within GC
- 6. Dilution with pristine gas (for Li)
- 7. Ubiquitous, at all [Fe/H]
- 🖌 8. Discreteness
- 9. Cluster-to-cluster variation
- 10. Make testable predictions!

(Gieles et al. 18)

MSP in GC – What's next? Modelling and testing

SMS models : Formation and stability

Merger process, including shock heating, hydrodynamic mixing and mass loss Gravitational, pulsational, and general relativistic instabilities

Formation and evolution of the low-mass stars

GC models : Accretion, feedback, N-body

SMS theoretical spectra -> High-z observations

Massive star clusters with high inflow rates $10^{4-5} M_{\odot} Myr^{-1}$ (ALMA)

GC – YMSC connection

Field stars with MSP properties

MSPs with abundance variations (He) → Interpretation of HST photometry

 \rightarrow Age of the GCs

