Пространственное моделирование сегментов спиральных рукавов Галактики по классическим цефеидам

А. В. Веселова, И. И. Никифоров

Санкт-Петербургский государственный университет

«Современная звёздная астрономия — 2017» УрФУ, Екатеринбург, 14–16 июня 2017 г.

Предыдущие результаты

- Ранее был предложен и апробирован новый подход к определению расстояния до центра Галактики (R₀) по геометрии сегментов спиральных рукавов (Nikiforov, Veselova, 2015).
- В рамках метода наибольшего правдоподобия (МНП) был разработан алгоритм пространственного моделирования сегментов рукавов Галактики с учетом дисперсии поперек рукава и неопределенности гелиоцентрических расстояний. Алгоритм не требует жесткой привязки объекта к определенному сегменту.
- Применение метода к мазерам привело к оценке $R_0=8.52^{+0.59}_{-0.52}$ кпк.

Метод наибольшего правдоподобия для отдельного сегмента

Модель отдельного сегмента спирального рукава:

Определение границ доверительных интервалов

 Значения границ доверительного интервала параметра p_j для уровня 1 σ удовлетворяют уравнению

$$\mathfrak{L}_{\mathsf{m}}(p_j) = \mathfrak{L}_{\mathsf{0}} + rac{1}{2}\,; \quad \mathfrak{L}_{\mathsf{0}} = \min \mathfrak{L}, \quad \mathfrak{L}_{\mathsf{m}}(p_j) = \min_{p_j = ext{const}} \mathfrak{L}.$$

Здесь $\mathfrak{L}_{\mathsf{m}}(p_j)$ — профиль логарифмической функции правдоподобия для параметра p_j .

Параболическое приближение для уровня 1 σ:

$$p_j^- = p_j^0 - \Delta p_j$$
, $p_j^+ = p_j^0 + \Delta p_j$;
 $\sigma^- = rac{\Delta^2 p_j}{2 igl(\mathfrak{L}_{\mathsf{m}}(p_j^-) - \mathfrak{L}_0 igr)}, \quad \sigma^+ = rac{\Delta^2 p_j}{2 igl(\mathfrak{L}_{\mathsf{m}}(p_j^+) - \mathfrak{L}_0 igr)}.$
Доверительный интервал имеет вид $(p_j^0 - \sigma^-, p_j^0 + \sigma^+)$.

 Сегмент спирального рукава представляется участком логарифмической спирали

$$R_{
m mod}(\lambda;R_0,k,X_s)=|R_0-X_s|e^{k\lambda},$$
 (2)

 $\lambda \in (-\infty; +\infty)$ — поворотная галактоцентрическая долгота, отсчет λ — по часовой стрелке (в направлении вращения Галактики) от направления на Солнце ($\lambda_{\odot} = 0 \pm 2\pi n$, $n \in \mathbb{Z}$); R_0 — расстояние от Солнца до полюса спирали; $k = \operatorname{tg} i$, где i — угол закрутки спирали; X_s — абсцисса точки пересечения сегментом направления на центр Галактики,

$$X_s = R_0 - R_{\rm mod}(\lambda = 0). \tag{3}$$

 Объекты, трассирующие спиральную ветвь, принадлежат одному ее витку:

$$\max_{j_1,\ j_2} |\lambda_{j_1} - \lambda_{j_2}| < 2\pi, \quad j_1, j_2 = 1, \dots, N.$$
 (4)

Полюс спирали С находится на прямой, задаваемой направлением от Солнца на центр Галактики, которое предполагается известным.

Расстояние от точки до спирали

$$egin{aligned} & O'(X_{0,j},Y_{0,j}), \ ilde{O}ig(X(ilde{\Lambda}),Y(ilde{\Lambda})ig). \ & X(ilde{\Lambda}) = R_0 - |R_0 - X_s| e^{k \widetilde{\Lambda}} \cos \widetilde{\Lambda}, \ & Y(ilde{\Lambda}) = |R_0 - X_s| e^{k \widetilde{\Lambda}} \sin \widetilde{\Lambda}. \end{aligned}$$

$$\begin{aligned} \left| O'\tilde{O} \right| &= \sqrt{\left(X(\tilde{\Lambda}) - X_{0,j} \right)^2 + \left(Y(\tilde{\Lambda}) - Y_{0,j} \right)^2}. \\ \Lambda_{\text{mod},j} : \quad \left| O'\tilde{O} \right| &= \min. \end{aligned} \tag{5} \\ (X_{0,j} - R_0) \Big(\sin \Lambda_{\text{mod},j} - k \cos \Lambda_{\text{mod},j} \Big) - k |R_0 - X_s| e^{k \Lambda_{\text{mod},j}} + \\ &+ Y_{0,j} \left(k \sin \Lambda_{\text{mod},j} + \cos \Lambda_{\text{mod},j} \right) = 0. \end{aligned}$$

Совместное определение параметров для нескольких сегментов. Общий случай

$$\begin{split} \mathcal{L} &= N \ln(2\pi) + N \ln \sigma_d + \sum_{a=1}^{N_{arm}} N_a \ln \sigma_{w,a} + \\ &+ \sum_{a=1}^{N_{arm}} \sum_{j=1}^{N_a} \min_{d_{0,j}} \left[\frac{w^2(d_{0,j}; R_0, i_a, X_{s,a})}{2\sigma_{w,a}^2} + \frac{(d_{obs,j} - d_{0,j})^2}{2\sigma_d^2} \right]. \end{split}$$
(7)

Неизвестные параметры (в общем случае $M=3\cdot N_{\mathsf{arm}}+1)$

	i_{arm_1}	$X_{s,{\sf arm}_1}$	$\sigma_{ m w,arm_1}$
	i_{arm_2}	$X_{s,{\sf arm}_2}$	$\sigma_{ m w,arm_2}$
R_0	$i_{\sf arm_3}$	$X_{s,{\sf arm}_3}$	$\sigma_{ m w,arm_3}$
	i_{arm_4}	$X_{s,{\sf arm}_4}$	$\sigma_{ m w,arm_4}$
			•••

Совместное определение параметров сегментов при нулевой ошибке модуля расстояния

$$\mathfrak{L} = \frac{N}{2}\ln(2\pi) + \sum_{a=1}^{N_{arm}} N_a \ln \sigma_{w,a} + \sum_{a=1}^{N_{arm}} \sum_{j=1}^{N_a} \frac{w^2(d_{0,j}; R_0, i_a, X_{s,a})}{2\sigma_{w,a}^2}.$$
 (8)

Неизвестные параметры (в общем случае)

	i_{arm_1}	$X_{s,{\sf arm}_1}$	$\sigma_{ m w,arm_1}$
	i_{arm_2}	$X_{s,{\sf arm}_2}$	$\sigma_{ m w,arm_2}$
R_0	$i_{\sf arm_3}$	$X_{s,{\sf arm}_3}$	$\sigma_{ m w,arm_3}$
	i_{arm_4}	$X_{s,{\sf arm}_4}$	$\sigma_{ m w,arm_4}$

Berdnikov, Dambis & Vozyakova (2014): 674 цефеиды. Бердников и др. (1996, 2000): $d_{{}_{\mathsf{БМО}}}=18.25\pm0.05.$

Дамбис и др. (2015): анализ распределения 565 цефеид, выделены 4 сегмента спиральных рукавов.

Распределение цефеид в проекции на плоскость Галактики

Совместное решение при $\sigma_d=0$

$R_{ m 0},$ кпк	Рукав	i	$X_s,$ кпк	$\sigma_{ m w},$ кпк
$8.61^{+1.02}_{-0.80}$	Sct	$-8.0^{+1.4}_{-1.5}$	$1.97\substack{+0.19 \\ -0.18}$	$0.092\substack{+0.025\\-0.018}$
	Sgr	$-6^{\circ}.5^{+1^{\circ}.6}_{-1^{\circ}.6}$	$0.559\substack{+0.091\\-0.088}$	$0.533\substack{+0.027\\-0.019}$
	Per	$-7^{\circ}_{.}5^{+1^{\circ}_{.4}}_{-1^{\circ}_{.4}}$	$-1.55\substack{+0.11\\-0.10}$	$0.594\substack{+0.037\\-0.028}$
	Out	$-9^{\circ}\!.4^{+1^{\circ}\!.5}_{-1^{\circ}\!.5}$	$-3.77\substack{+0.16 \\ -0.15}$	$0.604^{+0.049}_{-0.037}$

Результаты после переприписывания объектов к конкретному сегменту ($\sigma_d=0$). |

$$S_{j}^{2} = \min_{a=1,...,N_{\mathsf{arm}}} \left\{ rac{\mathsf{w}^{2}(d_{0,j}\,;R_{0},i_{a},X_{s,a})}{2\sigma_{\mathsf{w},a}^{2}}
ight\}$$

R_0 , кпк	Рукав	i	X_s , кпк	$\sigma_{ m w},$ кпк
$7.15\substack{+0.72 \\ -0.62}$	Sct	$-11^{\circ}\!.0^{+1^{\circ}\!.4}_{-2^{\circ}\!.1}$	$1.96\substack{+0.20\\-0.19}$	$0.111\substack{+0.030\\-0.002}$
	Sgr	$-13^{\circ}\!.2^{+1^{\circ}\!.5}_{-1^{\circ}\!.8}$	$0.739\substack{+0.097\\-0.089}$	$0.463\substack{+0.025\\-0.017}$
	Per	$-19^{\circ}_{1^{\circ}_{1^{\circ}_{.2}}}$	$-0.770^{+0.116}_{-0.102}$	$0.367\substack{+0.029\\-0.018}$
	Out	$-21^{\circ}\!.7^{+1^{\circ}\!.3}_{-1^{\circ}\!.4}$	$-2.77^{+0.13}_{-0.11}$	$0.823\substack{+0.048\\-0.039}$

Результаты после переприписывания объектов к конкретному сегменту ($\sigma_d=0$). ||

Функция правдоподобия при $\sigma_d eq 0$

$$egin{aligned} \mathfrak{L} &= N \ln(2\pi) + N \ln \sigma_d + \sum_{a=1}^{N_{\mathsf{arm}}} N_a \ln \sigma_{\mathsf{w},a} + \ &+ \sum_{a=1}^{N_{\mathsf{arm}}} \sum_{j=1}^{N_a} \min_{d_{0,j}} \left[rac{\mathsf{w}^2(d_{0,j}\,;R_0,i_a,X_{s,a})}{2\sigma_{\mathsf{w},a}^2} + rac{(d_{\mathsf{obs},j}-d_{0,j})^2}{2\sigma_d^2}
ight], \end{aligned}$$

Рукав Щита: $\sigma_{
m w}
ightarrow 0$ при $\sigma_d \in [0.1, 0.2]$ (Заболотских и др., 2002),

$$\mathfrak{L}_{a} = \frac{N_{a}}{2}\ln(2\pi) + N_{a}\ln\sigma_{d} + \sum_{j=1}^{N_{a}}\frac{(d_{\mathsf{obs},j} - d_{\mathsf{pr},j})^{2}}{2\sigma_{d}^{2}}.$$
 (9)

Профиль $\mathfrak{L}_{\mathsf{m}}(\sigma_{\mathsf{w}})$ для σ_d для рукава Щита

Совместное решение при $\sigma_d
eq 0$

В зависимости от предположений о распределении объектов и о значении σ_d $R_0 \in \left[7.6^{+0.8}_{-0.6}, 10.0^{+1.5}_{-1.2}
ight]$ кпк.

Рукав	Sct	Sgr
X_s	$(1.95 \div 1.96) \pm (0.03 \div 0.08)$	$(0.53 \div 0.56) \pm (0.02 \div 0.09)$
Рукав	Per	Out
X_s	$(-1.56 \div -1.55) \pm 0.11$	$pprox -3.8^{+0.2}_{-0.1}$

Расширенная выборка цефеид, N=636

Распределение значений X_{s} |

Распределение значений X_{s} . \parallel

z

Деление выборки на сегменты ($R_0=7.5\,$ кпк)

Выбор значения σ_d . Профиль $\mathfrak{L}_{\mathsf{m}}(\sigma_{\mathsf{w}})$ для σ_d

Зависимость результатов от начального деления выборки на сегменты

Деление выборки на сегменты при $R_0 = 7.5$ кпк.

- Оптимизация параметров для исходной выборки: $R_0=7.41^{+0.23}_{-0.22}$ кпк —>
- переприписывание: $R_0 = 7.45^{+0.26}_{-0.25}$ кпк \longrightarrow
- коррекция значений σ_w методом Монте-Карло, оптимизация остальных параметров: R₀ = 7.50^{+0.28}_{-0.27} кпк.

Деление выборки на сегменты при $R_0 = 8.5$ кпк.

- Оптимизация параметров для исходной выборки: $R_0=8.47^{+0.26}_{-0.25}$ кпк —>
- ullet переприписывание: $R_0 = 8.52 \pm 0.27$ кпк.

Деление выборки на сегменты. $R_0 \in [6.5, 8.5]$

Переприписывание об<u>ъектов</u> к конкретному сегменту ($\sigma_d=0.14)$

 $\Delta N = -6.$

 $\Delta N = -2.$

1) $R_0 = 7.39$ кпк, 2) $R_0 = 7.37$ кпк, 3) $R_0 = 7.33$ кпк, $\Delta N = 0.$

Рукав	$R_{ m 0}$, кпк	i	X_s , кпк	$\sigma_{ m w}$, кпк
Sct		-10.9 ± 0.8	1.98 ± 0.03	(0.00)
Sgr1		$-7^{\circ}_{.}6 \pm 0^{\circ}_{.}7$	1.29 ± 0.02	$0.116\substack{+0.017\\-0.015}$
Sgr2		$-6^{\circ}_{.}7 \pm 0^{\circ}_{.}6$	0.613 ± 0.020	$0.171\substack{+0.013\\-0.011}$
Loc	$7.24\substack{+0.22\\-0.21}$	$-7^{\circ}_{\cdot}2 \pm 0^{\circ}_{\cdot}6$	-0.098 ± 0.025	$0.230\substack{+0.019\\-0.017}$
Per		$-6^{\circ}_{\cdot}2 \pm 0^{\circ}_{\cdot}9$	-1.62 ± 0.04	$0.535\substack{+0.029\\-0.028}$
Out1		$-8^\circ_{\cdot}7\pm1^\circ_{\cdot}4$	-3.98 ± 0.09	$0.641\substack{+0.054\\-0.053}$
Out2		$-8^\circ m{.}6\pm1^\circ m{.}5$	-7.64 ± 0.23	(0.00)

Оптимизация параметров после коррекции $\sigma_{ m w}$ методом Монте–Карло

Рукав	$R_{ m 0}$, кпк	i	X_{s} , кпк	$\sigma_{ m w}$, кпк
Sct		-10 °.9 \pm 0°.9	1.98 ± 0.03	(0.00)
Sgr1		$-7 ce{.}6\pm0 ce{.}9$	1.29 ± 0.02	(0.150 ± 0.018)
Sgr2		$-6 ho$ $2 \pm 0 ho$	0.614 ± 0.026	(0.230 ± 0.010)
Loc	$7.24\substack{+0.27 \\ -0.26}$	$-7 ho$ 2 \pm 0 ho8	-0.100 ± 0.033	(0.310 ± 0.013)
Per		$-6^\circ.2\pm1^\circ.1$	-1.63 ± 0.05	(0.690 ± 0.033)
Out1		$-8^\circ.8\pm1^\circ.7$	-3.98 ± 0.11	(0.810 ± 0.051)
Out2		$-8^{\circ}_{.}6 \pm 1^{\circ}_{.}5$	-7.64 ± 0.23	(0.00)

Итоговое решение

Зависимость углов закрутки от значения $R_{0_{ m P}}$

Оптимизация параметров при $\sigma_d=0$

Рукав	$R_{ m 0}$, кпк	i	X_{s} , кпк	$\sigma_{ m w}$, кпк
Sct		$-10^{\circ}.7 \pm 0^{\circ}.9$	1.97 ± 0.03	(0.110 ± 0.012)
Sgr1		$-7 .^{\circ}\!8\pm0 .^{\circ}\!9$	1.30 ± 0.02	(0.170 ± 0.010)
Sgr2		$-6^\circ.7\pm0^\circ.7$	0.617 ± 0.023	(0.210 ± 0.012)
Loc	$7.25\substack{+0.25\-0.24}$	-7.3 ± 0.8	-0.102 ± 0.033	(0.310 ± 0.012)
Per		$-6^\circ\!.2\pm1^\circ\!.1$	-1.64 ± 0.05	(0.685 ± 0.031)
Out1		$-9^\circ.1\pm1^\circ.8$	-4.00 ± 0.12	(0.930 ± 0.051)
Out2		$-8^\circ.8\pm2^\circ.2$	-7.69 ± 0.42	(0.92 ± 0.10)
Sgr2 Loc Per Out1 Out2	$7.25^{+0.25}_{-0.24}$	$-6^{\circ}7 \pm 0^{\circ}7$ $-7^{\circ}3 \pm 0^{\circ}8$ $-6^{\circ}2 \pm 1^{\circ}1$ $-9^{\circ}1 \pm 1^{\circ}8$ $-8^{\circ}8 \pm 2^{\circ}2$	0.617 ± 0.023 -0.102 ± 0.033 -1.64 ± 0.05 -4.00 ± 0.12 -7.69 ± 0.42	(0.210 ± 0.012) (0.210 ± 0.012) (0.310 ± 0.012) (0.685 ± 0.031) (0.930 ± 0.051) (0.92 ± 0.10)

Зависимость $\sigma_{ m w}$ от X_s

Общая схема алгоритма

- Первичное разделение объектов на сегменты в соответствии с минимумами функции распределения значений X_s; выделение выборки базовых объектов сегментов, не зависящей от предположений о R₀.
- Оптимизация параметров для выборки базовых объектов, приписывание сегментам остальных объектов выборки.
- Итеративное переприписывание объектов конкретным сегментам на основе разделения выборки на базовую и спорную части, оптимизация параметров для финального разделения объектов на сегменты.
- Коррекция дисперсий поперек рукава (σ_w) методом Монте-Карло.
- Оптимизация параметров сегментов при постоянных скорректированных значениях *σ*_w.

Приведение оценки R_0 к современной калибровке шкале расстояний

Бердников и др. (1996, 2000): $d_{\text{БМО}} = 18.25 \pm 0.05$. de Grijs et al. (2014): $d_{\text{БМО}} = 18.49 \pm 0.09$.

$$rac{r+\Delta r}{r}=10^{0.2\Delta d}=1.117^{+0.053}_{-0.050}.$$

$$R_0 = 7.24^{+0.27}_{-0.26} \ {
m knk} \ \longrightarrow R_0 = 8.09^{+0.30}_{-0.29} \Big|_{
m stat} {}^{+0.38}_{-0.37} \Big|_{
m cal} \ {
m knk} \,.$$

Выводы. |

- Разработана модификация алгоритма пространственного моделирования сегментов спиральных рукавов на основе метода наибольшего правдоподобия в случае неопределенности модулей расстояний объектов и большой ширины сегмента.
- Предложен способ первоначального разделения объектов на сегменты с последующим итеративным переприписыванием на основе принципа разделения выборки на базовую и спорную части.
- Применение алгоритма к данным о пространственном распределении цефеид (Berdnikov et al. (2014)) привело к оценке $R_0 = 8.09^{+0.30}_{-0.29}|_{\text{stat}}|_{\text{cal}}^{+0.38}|_{\text{cal}}$ кпк.

Выводы. II

- Получены оценки параметров для семи сегментов спиральных рукавов. Углы закрутки различных сегментов значимо друг от друга не отличаются ((-8°8 ÷ -6°2) ± (0°8 ÷ 1°7)) за исключением рукава Щита (-10°9 ± 0°9).
- Зависимость углов закрутки от величины R₀ носит разнонаправленный характер для различных сегментов, выделяемых по классическим цефеидам.
- Подтверждена зависимость σ_w от расстояния от центра Галактики (Reid et al., 2014; Дамбис и др., 2015) с резким увеличением значений в области между Местным рукавом и рукавом Персея.

Профиль $\mathfrak{L}_{\mathsf{m}}(\sigma_{\mathsf{w}})$ от σ_d для рукава Внешнего-2

