1 – ГАИШ МГУ, 2 – физфак МГУ, 3 – ИНАСАН

А.С. Расторгуев^{1,2}, Н.А. Горыня^{1,3}, а также М.Л. Осташова¹, Я.А. Лазовик², Т.А. Сячина²,

Предварительные результаты анализа эффективных температур цефеид

Измерения эффективных температур цефеид: как их использовать ?

Modern Stellar Astronomy - 2016

June 08-10 2016, Kislovodsk, Russia

Наблюдательный материал

Luck & Andrievsky (AJ, 128, 343, 2004); Kovtyukh et al. (AJ, 129, 433, 2005); Andrievsky et al. (AJ, 130, 1880, 2005); Luck et al. (AJ, 136, 98, 2008):

Эшельные спектры с 2.1-м рефлектора Struve обсерватории McDonald (R~60000, S/N > 100) Добавлены спектры из архивов ELODIE (Haute-Provence), CORALIE (ESO) (R ~ 42000)

Наша работа:

Лучевые скорости из баз данных ИЛС (1987-2015) и McMaster University (Canada) -

Фотометрия из базы данных Л.Н. Бердникова

Методика Определение температуры: • LDR (Line Depth Ratio - Kovtyukh & Gorlova, A&A, 358, 587, 2000; Kovtyukh, MNRAS, 378, 617, 2007) калибровки отношения глубин до 130 (!) пар линий

Пример: отношение I_{low} / I_{high} Важно: уширение близких

по частоте линий не меняет отношения их глубин !

Определение lg g, [Fe/H], Vt: • Модели атмосфер Kurucz (код WIDTH9 / сетка моделей ATLAS9) 33 цефеиды с опубликованными измерениями По спектральным данным о FGK – сверхгигантах выведена калибровка нормального цвета (B-V)_о (Kovtyukh et al., MNRAS, 389, 1336, 2008):

• (B - V)o = 57.984 - 10.3587* $(\log T_{eff})^2$ + + 1.675 72* $(\log T_{eff})^3$ - 3.356* $\log g$ + 0.0321*Vt + + 0.2615*[Fe/H] + 0.8833* $(\log g)$ * $(\log T_{eff})$

 Сеё помощью были определены нормальные цвета и избытки цвета 164 цефеид в 675 пульсационных фазах

 Точность определения температур варьируется от 10-20К до 30-50К в зависимости от S/N

Вопросы:

Насколько точны измерения температуры ?
Насколько хороши оценки избытков цвета ?
Как можно использовать независимые определения температур цефеид для уточнения их светимостей и шкалы расстояний ?

Идея: соединить данные о Т_{еff} с нашими расчётами пульсационных радиусов цефеид методами Бааде-Беккера-Весселинка-Балона (BBWBR) и определениями E(B-V) методом Расторгуева и др. (2011, 2013)

Определение пульсационных радиусов цефеид - 2 метода: • 1) Обобщённый метод Л. Балона (1977) моделирования кривой блеска: • $V = -5 \cdot \lg \frac{(R) + r(t)}{R_0} + \sum_{k=0}^{N} A_k \cdot (B - V)^k, N > 2$ (Сачков и др., 1998; Сачков, 2002; Осташова, 2015) {A_k} содержат (неизвлекаемую) информацию о калибровках T_{eff} и BC (V) по нормальному цвету звёзд (B-V)₀ и избытке цвета E(B-V).

Преимущества: в отличие от метода поверхностной яркости (Barnes & Evans, 1976), никакие калибровки для определения *R* (т) не требуются; только *PF* (P)

2) Метод Расторгуева и др. (2011, 2013): Использование калибровок T_{eff} и BC(V) по нормальному цвету (B-V)₀ (Flower, 1996; Bessell, Castelli, Plez, 1998; и др.), позволяющее оценить избыток цвета **E**(B-V)

$$m_{\lambda} = -5 \cdot \lg \frac{\langle R \rangle + r(t)}{R_0} - \Psi(CI_0) + Y,$$

Видимый модуль расстояния

где
$$Y = 10 \cdot \lg T_{eff}^0 + M_{bol}^0 + A_{\lambda} + (m - M)_0$$

 $\Psi(CI_0)$ - известная нелинейная калибровка $\Psi = 10 \cdot \lg T_{eff} + BC(\lambda)$ по нормальному цвету $CI_0 = CI - CE$

•	SU	Cas	1.94951 *
•	SZ	Tau	3.1488555 '
•	RT	Aur	3.7282359
	SU	Суд	3.84562
	У	Lac	4.3237573
	Т	Vul	4.4354306
	FF	Aql	4.470911 *
	Delta	Сер	5.366247
•	У	Sgr	5.7734014
	Х	Vul	6.3195390
	U	Sgr	6.7453107
	eta	Aql	7.176845
•	W	Sgr	7.595
•	RX	Cam	7.9121815
•	W	Gem	7.9136042
	U	Vul	7.99080
	S	Sge	8.38205
	V500	Sco	9.3168051
	УZ	Sgr	9.5537719
	VX	Per	10.8856891
•	Ζ	Lac	10.885712
	RX	Aur	11.6240569
	TT	Aql	13.75551
	SV	Mon	15.234933
	Х	Суд	16.38633
	RW	Cam	16.41726
	CD	Суд	17.0737016
	WZ	Sgr	21.85050
	Х	Pup	25.96529
	Т	Mon	27.0334456
		Car	35.564691
	SV	Vul	44.969
	5	Vul	68 4765

При вычислении r(t) для перевода Vr в dR/dt использовалась зависимость Projection Factor (PF) vs lg P (Nardetto et al., 2007)

CD Суд (метод Балона, N=9)

Большие различия значений lg g: не вполне корректная декомпозиция профиля Фойгта (разделения вклада электронного давления и Допплеровского уширения)?

Сравнение измеренных и вычисленных нами по изменениям радиуса (линия) значений lg g

(Δ lg g ~ 0.2)

CD Cyg

Вывод: калибровка нормальных цветов Kovtyukh et al. (2008) вызывает сомнения

Алгоритмы анализа данных:

Пробное значение E(B-V) Вычисляем Т_{еff} по показателям цвета с калибровками F96, BCP98 Повторяем процедуру до наилучшего согласования с измеренными значениями Т_{eff} Вычисляем М_V и другие параметры

2) Вычисляем кривую М_V по измеренным значениям T_{eff}, при этом используем найденной избыток E(B-V) только для оценки BC(V) Используем наблюдаемую кривую блеска в качестве "шаблона", подбирая ModV(арр) для наилучшего совпадения кривых блеска в полосе V

Cyg • **BCP98** E(B-V)≈0.56^m • < M_V>_T ≈ -4.68m -4.70m (2) ModV(app) ≈ • 13.62^m

RX Aur
BCP98
E(B-V) ~ 0.33^m
Mv>_I ≈ -4.47^m

RW Cam BCP98 $E(B-V) \sim 0.52:$ $\langle M_{V} \rangle_{I} \approx -4.07^{m};$ $-4.01_{m};$

1а: Пример не очень хорошего согласия с Т_{еff}, определённой по цвету – малая амплитуда (B-V)?

S Sge (binary)

E(B-V) ≈ 0.17^m <Mv>I ≈ -4.19^m

Cm. lg g !

Оба варианта дают близкие оценки < M_v>₁

Сравнение избытков цвета

Наши E(B-V) систематически больше

Замечание: разброс многочисленных (~ 20 работ !) оценок E(B-V) достигает 0.2^m

В исходной выборке 3 цефеиды Р1, их периоды уже скорректированы

Может быть, их больше ? δ lg P ~ 0.15

Показаны 2 зависимости по Сачкову (2002)

Основные зависимости

Полоса

нестабильности

Период - цвет

Период светимость

Общие свойства выборки

1) Близость профилей М_V и Т_{еff} — Согласие температурных шкал F96-BCP98 и измерений Т_{eff} 2) Расхождение значений и амплитуд Ід д Погрешности интерпретации профиля линий? •3) 28 цефеид с наилучшим согласием расчётных и наблюдательных кривых (из 33-х) могут быть использованы для дальнейшего анализа • 4) Ещё несколько цефеид можно отнести к Р1? Бетимость цефеид с Р = 10^d примерно на 0.3^m выше зависимости Бердникова и др. (1996) • 6) Эффекты металличности не изучались • 7) Проблемы с цефеидами больших периодов (сбой фаз пульсаций - изменения периода)

Перспективы

Для всех изученных цефеид по изменениям радиуса R(t) и T_{eff} можно напрямую определить кривую M_{bol}

Однако для расчёта

«М_{ьоl}»_I необходимо знать формы кривых блеска, поэтому надёжные оценки пока есть лишь у небольшого числа цефеид выборки с хорошо "прописанными" кривыми Т_{еff}

Дальнейшие спектральные измерения эффективных температур цефеид на разных фазах пульсаций **(а заодно** и лучевых скоростей и химизма) представляются крайне актуальными в свете проблематики шкалы расстояний

Благодарим

за внимание

View On the Life of GAlaxies