# Формирование баров в галактиках с каспом

Е.В. Поляченко, П.П.Берцик, А. Юст



Кисловодск, 9 июня 2016

### Модель без балджа

- быстрое формирование бара
- рост плотности в центре (псевдо-балдж)
- разрушение бара, повторное формирование
- Почему 0.9 < R<sub>c</sub>/R<sub>b</sub> < 1.3 ?
- Почему наблюдается меньше баров на z > 0.5 ?

Abraham et al. 1999, Merrifield et al. 2000; Binney & Tremaine 2008

### Проблема и постановка задачи

 ILR запрещает формирование бара

 $m(\Omega_{\rm p} - \Omega(R)) = \pm \kappa$ 



#### "Most real bars are not made by the bar instability"

Sellwood 2000; Kormendy 2013

#### Численные бары в моделях с каспом



Widrow et al., 2008 ApJ 679, 1239 (WPD)

### Модель

- 1. Экспоненциальный диск  $M_d$ ,  $R_d$ ,  $z_d$ ;  $\sigma_0$ ,  $R_\sigma$
- 2. Балдж Серсика  $R_{e'} n, \Sigma_0$  $\Sigma(R) = \Sigma_0 e^{-b(R/R_e)^{1/n}} \qquad \rho(r) = \rho_b \left(\frac{r}{R_e}\right)^{-p} e^{-b(r/R_e)^{1/n}}$
- 3. Гало (темное, звездное и толстый звездный диск) <sub>Qh</sub>, *a*<sub>h</sub>, *α*, β

$$\rho(r) = \frac{\rho_{\rm h}}{(r/a_{\rm h})^{\alpha} (1 + r/a_{\rm h})^{\beta - \alpha}}$$

Widrow et al., 2008 ApJ 679, 1239 (WPD)

### Модель — параметры диска

- пов. плотность (KG, JJ)
  - $-48 \mathrm{M}_{\odot}/\mathrm{pc}^2$
- радиальная дисперсия (WPD)
  - 25 km/s
- характерные размеры (WPD, JJ)
  2.9 kpc, 300 pc
- масса (WPD):
  - 4.2 10<sup>10</sup> M<sub> $\odot$ </sub>

Just A., Jahreiss H., 2010 (JJ) Kuijken, K., & Gilmore, G. 1991 (KG) Widrow et al., 2008 (WPD)



Holmberg et al. (2009) A&A 501, 941

### Модель — параметры балджа

- показатели (WPD)
  - n=1.118 -> p=0.5
- рад. шкала (WPD)
  - 0.64 kpc
- масса (WPD)
  - 1.02  $10^{10} \,\mathrm{M_{\odot}}$



#### Widrow et al., 2008 (WPD)

### Модель — параметры гало

- Via Lactea II:
  - $M_{\rm h} = 1.9 \ 10^{12} \ {\rm M}_{\odot}$
  - $r_{200} = 402 \text{ kpc}$
  - $c = r_{200} / a_{\rm h} = 13.29$
  - $\max V_{c} = 186 \text{ km/s}$
- Перенормир. модель:
  - $M_h = 1.29 \ 10^{12} \ M_\odot$
  - $r_{200} = 229.3 \text{ kpc}$
  - c = 13.29
  - $\max V_{c} = 186 \text{ km/s}$

Diemand J. et al., 2008, Nature, 454, 735



Moetazedian, Just 2015, arXiv:1508.03580

### Модель — круговая скорость



max  $V_c = 226.5$  at R = 7.6 kpc // 224.3 at 8.1 kpc

### Модель — устойчивость



min Q = 1.4 at R = 6 kpc

# N-body

-16



### N-body — живое гало и балдж

|     | N <sub>tot</sub> | $N_d   N_b   N_h$ | 8    | $\Omega_{ m p}$ | ωī                   |
|-----|------------------|-------------------|------|-----------------|----------------------|
|     | [M]              | [M]               | [pc] | [km/s/kpc]      | [Gyr <sup>-1</sup> ] |
| S1  | 5.6              | 1.1   0.5   4     | 4117 | 51              | 3.8                  |
| S3m | 16.75            | 6 1.5 9.25        | 4117 | 52              | 3.6                  |
| B1  | 5.6              | 1.1   0.5   4     | 10   | 55              | 4.2                  |
| B2m | 16.75            | 6 1.5 9.25        | 10   | 54              | 4.3                  |
| B3  | 104.5            | 6 1.5 97          | 10   | 55              | 4.4                  |

## N-body — радиус бара



Binney, Tremaine, 2008, p. 545

# N-body — моделирование каспа

- Точность вычисления потенциала
- Равновесие
- Достаточность частиц балджа
  - R > 0.1 kpc need 0.2M
  - R > 0.05 kpc need 1.5M
- Смягчение гравитации



Наши модели имеют достаточное разрешение до 0.05 ... 0.1 kpc —> ILR ?!  $\max \Omega_{\rm pr} = 63...75 \ {\rm km/s/kpc}$ ,  $\Omega_{\rm p} = 56 \ {\rm km/s/kpc}$ 

### Глобальные моды

- Матричный метод Калнайса (1971, 1977)
  - биортонормальная система *ǫ*,ψ(R)
  - нелинейная по отн.  $\omega = ||\delta_{ij} M_{ij}(\omega)|| = 0$
- Линейные матр. методы  $Ax = \omega x$ 
  - Polyachenko (2004, 2005): collocation scheme
  - A. Jalali
    - ◆ ЕСВ (2007) : биорт. система ϱ,ψ (R); нелинейность; без каспа
    - ◆ FEM (2010) : интерпол. функции  $F_l$ ,  $\Psi_l$  (E,L); повышенная жесткость

Polyachenko E., Just A., 2015 MNRAS, 446, 1203 (PJ)

## N-body — фикс. гало и балдж

|          | N <sub>tot</sub> | $N_d   N_b   N_h$ | 3    | Ωp         | ωI                   |
|----------|------------------|-------------------|------|------------|----------------------|
|          | [M]              | [M]               | [pc] | [km/s/kpc] | [Gyr <sup>-1</sup> ] |
| S2r (FP) | 5.6              | 1.1   0.5   4     | 4117 | 48         | 1.1                  |
| S4r (AX) | 5.6              | 1.1   -   -       | 12   | 51         | 1.2                  |
| S5r (SP) | 5.6              | 1.1   -   -       | 12   | 50         | 1.8                  |
| T1r (FP) | 16.75            | 6 1.5 9.25        | 10   | 52         | 1.8                  |
| T2r (SP) | 6.0              | 6   -   -         | 10   | 54         | 1.2                  |
| T3r (AX) | 6.0              | 6 - -             | 10   | 52         | 1.9                  |

Sellwood, Debattista (2009) 'Stochasticity in N-body Simulations ...'

### Глобальные моды — орбиты (Rz)



### Глобальные моды — орбиты R(t)

Variation of polar radius with time



- радиальное действие и радиальная частота не определены
- ILR не определен

### Глобальные моды — усреднение по z

Ω-к/2

• ПЛОТНОСТЬ

$$\Sigma_d(R) = \int dz \rho(R, z)$$

нет неустойчивых мод

• радиальная сила
$$F_R(R) = -\int dz \, rac{\partial \Phi(R,z)}{\partial R}$$



### Глобальные моды — частоты



#### Глобальные моды — собств. функции



### Глобальные моды — $\Omega_p$ v.s. $z_d$



#### Глобальные моды — $\omega_I$ v.s. $z_d$



#### Глобальные моды — $\omega_I$ v.s. $M_d$



### Заключение — сценарий

- 1. Темное гало
- 2. Балдж с каспом (небольшая эллипт. галактика)
- 3. Медленный рост диска без неустойчивости
  - Формирование бара при почти сформированном диске (10 Gyr)
- ILR не существует при  $R ≤ z_d$
- Объясняется недостаток баров на z > 0.5
- Объясняется  $1 \leq \mathcal{R} < 1.3$